Dirichlet series
L(s) = 1 | + 5.24e5·2-s − 1.85e8·3-s + 2.06e11·4-s + 7.62e12·5-s − 9.72e13·6-s − 6.51e14·7-s + 7.20e16·8-s − 5.18e17·9-s + 4.00e18·10-s − 1.58e19·11-s − 3.82e19·12-s + 6.42e18·13-s − 3.41e20·14-s − 1.41e21·15-s + 2.36e22·16-s − 3.00e22·17-s − 2.71e23·18-s − 2.82e23·19-s + 1.57e24·20-s + 1.20e23·21-s − 8.28e24·22-s − 1.43e25·23-s − 1.33e25·24-s + 4.36e25·25-s + 3.37e24·26-s + 1.15e26·27-s − 1.34e26·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.276·3-s + 3/2·4-s + 0.894·5-s − 0.390·6-s − 0.151·7-s + 1.41·8-s − 1.15·9-s + 1.26·10-s − 0.857·11-s − 0.414·12-s + 0.0158·13-s − 0.213·14-s − 0.247·15-s + 5/4·16-s − 0.518·17-s − 1.62·18-s − 0.621·19-s + 1.34·20-s + 0.0418·21-s − 1.21·22-s − 0.922·23-s − 0.390·24-s + 3/5·25-s + 0.0224·26-s + 0.381·27-s − 0.226·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(7519.32\) |
Root analytic conductor: | \(9.31203\) |
Motivic weight: | \(37\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(2\) |
Selberg data: | \((4,\ 100,\ (\ :37/2, 37/2),\ 1)\) |
Particular Values
\(L(19)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{39}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 - p^{18} T )^{2} \) |
5 | $C_1$ | \( ( 1 - p^{18} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 + 6870404 p^{3} T + 9359750919958 p^{10} T^{2} + 6870404 p^{40} T^{3} + p^{74} T^{4} \) |
7 | $D_{4}$ | \( 1 + 13297556160044 p^{2} T + \)\(14\!\cdots\!14\)\( p^{5} T^{2} + 13297556160044 p^{39} T^{3} + p^{74} T^{4} \) | |
11 | $D_{4}$ | \( 1 + 130670377114549776 p^{2} T + \)\(53\!\cdots\!66\)\( p^{3} T^{2} + 130670377114549776 p^{39} T^{3} + p^{74} T^{4} \) | |
13 | $D_{4}$ | \( 1 - 494564960558966044 p T + \)\(17\!\cdots\!98\)\( p^{2} T^{2} - 494564960558966044 p^{38} T^{3} + p^{74} T^{4} \) | |
17 | $D_{4}$ | \( 1 + \)\(17\!\cdots\!08\)\( p T + \)\(23\!\cdots\!02\)\( p^{2} T^{2} + \)\(17\!\cdots\!08\)\( p^{38} T^{3} + p^{74} T^{4} \) | |
19 | $D_{4}$ | \( 1 + \)\(28\!\cdots\!00\)\( T + \)\(17\!\cdots\!62\)\( p T^{2} + \)\(28\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
23 | $D_{4}$ | \( 1 + \)\(14\!\cdots\!08\)\( T + \)\(23\!\cdots\!14\)\( p T^{2} + \)\(14\!\cdots\!08\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
29 | $D_{4}$ | \( 1 + \)\(57\!\cdots\!20\)\( T + \)\(49\!\cdots\!42\)\( p T^{2} + \)\(57\!\cdots\!20\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
31 | $D_{4}$ | \( 1 - \)\(22\!\cdots\!44\)\( T + \)\(10\!\cdots\!26\)\( p T^{2} - \)\(22\!\cdots\!44\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
37 | $D_{4}$ | \( 1 - \)\(63\!\cdots\!12\)\( p T + \)\(12\!\cdots\!18\)\( T^{2} - \)\(63\!\cdots\!12\)\( p^{38} T^{3} + p^{74} T^{4} \) | |
41 | $D_{4}$ | \( 1 + \)\(33\!\cdots\!56\)\( T + \)\(58\!\cdots\!46\)\( T^{2} + \)\(33\!\cdots\!56\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
43 | $D_{4}$ | \( 1 + \)\(30\!\cdots\!48\)\( T + \)\(70\!\cdots\!62\)\( T^{2} + \)\(30\!\cdots\!48\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
47 | $D_{4}$ | \( 1 + \)\(57\!\cdots\!96\)\( T + \)\(15\!\cdots\!78\)\( T^{2} + \)\(57\!\cdots\!96\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
53 | $D_{4}$ | \( 1 + \)\(12\!\cdots\!28\)\( T + \)\(16\!\cdots\!22\)\( T^{2} + \)\(12\!\cdots\!28\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
59 | $D_{4}$ | \( 1 + \)\(47\!\cdots\!40\)\( T + \)\(66\!\cdots\!38\)\( T^{2} + \)\(47\!\cdots\!40\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
61 | $D_{4}$ | \( 1 - \)\(11\!\cdots\!84\)\( T + \)\(17\!\cdots\!06\)\( T^{2} - \)\(11\!\cdots\!84\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
67 | $D_{4}$ | \( 1 - \)\(76\!\cdots\!04\)\( T + \)\(21\!\cdots\!58\)\( T^{2} - \)\(76\!\cdots\!04\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
71 | $D_{4}$ | \( 1 + \)\(17\!\cdots\!76\)\( T + \)\(62\!\cdots\!26\)\( T^{2} + \)\(17\!\cdots\!76\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
73 | $D_{4}$ | \( 1 + \)\(25\!\cdots\!28\)\( T + \)\(18\!\cdots\!02\)\( T^{2} + \)\(25\!\cdots\!28\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
79 | $D_{4}$ | \( 1 + \)\(29\!\cdots\!80\)\( T + \)\(76\!\cdots\!18\)\( T^{2} + \)\(29\!\cdots\!80\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
83 | $D_{4}$ | \( 1 + \)\(57\!\cdots\!88\)\( T + \)\(26\!\cdots\!82\)\( T^{2} + \)\(57\!\cdots\!88\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
89 | $D_{4}$ | \( 1 + \)\(17\!\cdots\!20\)\( T + \)\(34\!\cdots\!58\)\( T^{2} + \)\(17\!\cdots\!20\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
97 | $D_{4}$ | \( 1 + \)\(24\!\cdots\!56\)\( T + \)\(91\!\cdots\!58\)\( T^{2} + \)\(24\!\cdots\!56\)\( p^{37} T^{3} + p^{74} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−12.73660161638334851055762928733, −12.18514768756111852234548599902, −11.24845231506530248069580810137, −11.07158561625173846818822523507, −10.10965264368049374098657355062, −9.605670757377109707356472886777, −8.364178216760477204031401219148, −8.069888683392812894331537428527, −6.71532226905801905734105790779, −6.53538917979657866022564063014, −5.65100917576693380863948649946, −5.40987349777463850717875181957, −4.68731911290903602480543382555, −3.97178720173430513063504440393, −2.91875255903165886086164931899, −2.83658219537248301860475982231, −1.90664924263849290447410384716, −1.48083451459657877538021698046, 0, 0, 1.48083451459657877538021698046, 1.90664924263849290447410384716, 2.83658219537248301860475982231, 2.91875255903165886086164931899, 3.97178720173430513063504440393, 4.68731911290903602480543382555, 5.40987349777463850717875181957, 5.65100917576693380863948649946, 6.53538917979657866022564063014, 6.71532226905801905734105790779, 8.069888683392812894331537428527, 8.364178216760477204031401219148, 9.605670757377109707356472886777, 10.10965264368049374098657355062, 11.07158561625173846818822523507, 11.24845231506530248069580810137, 12.18514768756111852234548599902, 12.73660161638334851055762928733