Dirichlet series
L(s) = 1 | + 6.55e4·2-s + 3.89e7·3-s + 3.22e9·4-s − 6.10e10·5-s + 2.55e12·6-s − 1.20e13·7-s + 1.40e14·8-s + 1.49e14·9-s − 4.00e15·10-s − 3.98e15·11-s + 1.25e17·12-s + 5.81e15·13-s − 7.88e17·14-s − 2.37e18·15-s + 5.76e18·16-s − 9.08e16·17-s + 9.82e18·18-s − 9.10e19·19-s − 1.96e20·20-s − 4.68e20·21-s − 2.61e20·22-s − 1.66e21·23-s + 5.48e21·24-s + 2.79e21·25-s + 3.80e20·26-s − 2.33e22·27-s − 3.87e22·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.56·3-s + 3/2·4-s − 0.894·5-s + 2.21·6-s − 0.958·7-s + 1.41·8-s + 0.242·9-s − 1.26·10-s − 0.287·11-s + 2.35·12-s + 0.0314·13-s − 1.35·14-s − 1.40·15-s + 5/4·16-s − 0.00769·17-s + 0.343·18-s − 1.37·19-s − 1.34·20-s − 1.50·21-s − 0.407·22-s − 1.30·23-s + 2.21·24-s + 3/5·25-s + 0.0445·26-s − 1.51·27-s − 1.43·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(3706.02\) |
Root analytic conductor: | \(7.80237\) |
Motivic weight: | \(31\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(2\) |
Selberg data: | \((4,\ 100,\ (\ :31/2, 31/2),\ 1)\) |
Particular Values
\(L(16)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{33}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 - p^{15} T )^{2} \) |
5 | $C_1$ | \( ( 1 + p^{15} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 - 4326484 p^{2} T + 624714725294 p^{7} T^{2} - 4326484 p^{33} T^{3} + p^{62} T^{4} \) |
7 | $D_{4}$ | \( 1 + 245636353988 p^{2} T + \)\(22\!\cdots\!46\)\( p^{5} T^{2} + 245636353988 p^{33} T^{3} + p^{62} T^{4} \) | |
11 | $D_{4}$ | \( 1 + 3988310318131776 T + \)\(30\!\cdots\!06\)\( p T^{2} + 3988310318131776 p^{31} T^{3} + p^{62} T^{4} \) | |
13 | $D_{4}$ | \( 1 - 447180343089892 p T + \)\(29\!\cdots\!74\)\( p^{3} T^{2} - 447180343089892 p^{32} T^{3} + p^{62} T^{4} \) | |
17 | $D_{4}$ | \( 1 + 90808009705448652 T + \)\(20\!\cdots\!42\)\( T^{2} + 90808009705448652 p^{31} T^{3} + p^{62} T^{4} \) | |
19 | $D_{4}$ | \( 1 + 91080908739917057240 T + \)\(46\!\cdots\!02\)\( p T^{2} + 91080908739917057240 p^{31} T^{3} + p^{62} T^{4} \) | |
23 | $D_{4}$ | \( 1 + 72487748903732510868 p T + \)\(61\!\cdots\!82\)\( p^{2} T^{2} + 72487748903732510868 p^{32} T^{3} + p^{62} T^{4} \) | |
29 | $D_{4}$ | \( 1 + \)\(32\!\cdots\!40\)\( p T + \)\(77\!\cdots\!38\)\( p^{2} T^{2} + \)\(32\!\cdots\!40\)\( p^{32} T^{3} + p^{62} T^{4} \) | |
31 | $D_{4}$ | \( 1 + \)\(41\!\cdots\!56\)\( p T + \)\(36\!\cdots\!86\)\( T^{2} + \)\(41\!\cdots\!56\)\( p^{32} T^{3} + p^{62} T^{4} \) | |
37 | $D_{4}$ | \( 1 + \)\(21\!\cdots\!32\)\( T + \)\(48\!\cdots\!82\)\( T^{2} + \)\(21\!\cdots\!32\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
41 | $D_{4}$ | \( 1 + \)\(24\!\cdots\!76\)\( p T + \)\(13\!\cdots\!46\)\( T^{2} + \)\(24\!\cdots\!76\)\( p^{32} T^{3} + p^{62} T^{4} \) | |
43 | $D_{4}$ | \( 1 - \)\(10\!\cdots\!16\)\( T + \)\(76\!\cdots\!78\)\( T^{2} - \)\(10\!\cdots\!16\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
47 | $D_{4}$ | \( 1 - \)\(10\!\cdots\!28\)\( T + \)\(85\!\cdots\!02\)\( T^{2} - \)\(10\!\cdots\!28\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
53 | $D_{4}$ | \( 1 - \)\(15\!\cdots\!56\)\( T + \)\(56\!\cdots\!78\)\( T^{2} - \)\(15\!\cdots\!56\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
59 | $D_{4}$ | \( 1 + \)\(41\!\cdots\!20\)\( T - \)\(36\!\cdots\!82\)\( T^{2} + \)\(41\!\cdots\!20\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
61 | $D_{4}$ | \( 1 + \)\(10\!\cdots\!76\)\( T + \)\(59\!\cdots\!66\)\( T^{2} + \)\(10\!\cdots\!76\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
67 | $D_{4}$ | \( 1 + \)\(28\!\cdots\!52\)\( T + \)\(96\!\cdots\!42\)\( T^{2} + \)\(28\!\cdots\!52\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
71 | $D_{4}$ | \( 1 + \)\(50\!\cdots\!56\)\( T + \)\(32\!\cdots\!26\)\( T^{2} + \)\(50\!\cdots\!56\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
73 | $D_{4}$ | \( 1 + \)\(14\!\cdots\!64\)\( T + \)\(13\!\cdots\!78\)\( T^{2} + \)\(14\!\cdots\!64\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
79 | $D_{4}$ | \( 1 + \)\(41\!\cdots\!60\)\( T + \)\(15\!\cdots\!58\)\( T^{2} + \)\(41\!\cdots\!60\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
83 | $D_{4}$ | \( 1 - \)\(81\!\cdots\!76\)\( T + \)\(48\!\cdots\!78\)\( T^{2} - \)\(81\!\cdots\!76\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
89 | $D_{4}$ | \( 1 - \)\(43\!\cdots\!20\)\( T + \)\(38\!\cdots\!78\)\( T^{2} - \)\(43\!\cdots\!20\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
97 | $D_{4}$ | \( 1 - \)\(35\!\cdots\!28\)\( T + \)\(33\!\cdots\!02\)\( T^{2} - \)\(35\!\cdots\!28\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−13.25129642095814465644907896598, −13.22675274283704039825883465505, −12.29220750009867424823167517172, −11.70759852142898920607028920529, −10.83952189156692821548815250398, −10.13918560999091811341745471003, −8.938268789095556466354512330021, −8.680083224204161246746740425056, −7.50740521851980776096344695676, −7.44971581113566098046979031324, −6.15536446147803791253968916877, −5.77417643163608552608697863789, −4.58289123684851656691846756273, −3.93964003609424359527125062775, −3.29483301015647943691546324560, −3.16517723602498177324474627572, −2.14097577537524953912673940571, −1.83435827452413777695292052411, 0, 0, 1.83435827452413777695292052411, 2.14097577537524953912673940571, 3.16517723602498177324474627572, 3.29483301015647943691546324560, 3.93964003609424359527125062775, 4.58289123684851656691846756273, 5.77417643163608552608697863789, 6.15536446147803791253968916877, 7.44971581113566098046979031324, 7.50740521851980776096344695676, 8.680083224204161246746740425056, 8.938268789095556466354512330021, 10.13918560999091811341745471003, 10.83952189156692821548815250398, 11.70759852142898920607028920529, 12.29220750009867424823167517172, 13.22675274283704039825883465505, 13.25129642095814465644907896598