Dirichlet series
L(s) = 1 | − 6.55e4·2-s + 2.90e7·3-s + 3.22e9·4-s − 6.10e10·5-s − 1.90e12·6-s + 1.27e13·7-s − 1.40e14·8-s − 5.89e14·9-s + 4.00e15·10-s − 5.00e14·11-s + 9.34e16·12-s − 1.99e17·13-s − 8.38e17·14-s − 1.77e18·15-s + 5.76e18·16-s + 1.21e19·17-s + 3.86e19·18-s + 1.27e20·19-s − 1.96e20·20-s + 3.71e20·21-s + 3.28e19·22-s + 1.26e21·23-s − 4.08e21·24-s + 2.79e21·25-s + 1.30e22·26-s − 4.07e22·27-s + 4.12e22·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.16·3-s + 3/2·4-s − 0.894·5-s − 1.65·6-s + 1.01·7-s − 1.41·8-s − 0.954·9-s + 1.26·10-s − 0.0361·11-s + 1.75·12-s − 1.08·13-s − 1.44·14-s − 1.04·15-s + 5/4·16-s + 1.03·17-s + 1.34·18-s + 1.92·19-s − 1.34·20-s + 1.18·21-s + 0.0511·22-s + 0.990·23-s − 1.65·24-s + 3/5·25-s + 1.52·26-s − 2.65·27-s + 1.52·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(3706.02\) |
Root analytic conductor: | \(7.80237\) |
Motivic weight: | \(31\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 100,\ (\ :31/2, 31/2),\ 1)\) |
Particular Values
\(L(16)\) | \(\approx\) | \(2.035694691\) |
\(L(\frac12)\) | \(\approx\) | \(2.035694691\) |
\(L(\frac{33}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 + p^{15} T )^{2} \) |
5 | $C_1$ | \( ( 1 + p^{15} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 - 358324 p^{4} T + 24247506922 p^{10} T^{2} - 358324 p^{35} T^{3} + p^{62} T^{4} \) |
7 | $D_{4}$ | \( 1 - 1827879729316 p T + \)\(39\!\cdots\!22\)\( p^{4} T^{2} - 1827879729316 p^{32} T^{3} + p^{62} T^{4} \) | |
11 | $D_{4}$ | \( 1 + 500906012122176 T - \)\(20\!\cdots\!94\)\( p T^{2} + 500906012122176 p^{31} T^{3} + p^{62} T^{4} \) | |
13 | $D_{4}$ | \( 1 + 15341543253854492 p T + \)\(44\!\cdots\!62\)\( p^{2} T^{2} + 15341543253854492 p^{32} T^{3} + p^{62} T^{4} \) | |
17 | $D_{4}$ | \( 1 - 12159060327494700852 T + \)\(16\!\cdots\!26\)\( p T^{2} - 12159060327494700852 p^{31} T^{3} + p^{62} T^{4} \) | |
19 | $D_{4}$ | \( 1 - \)\(12\!\cdots\!60\)\( T + \)\(63\!\cdots\!02\)\( p T^{2} - \)\(12\!\cdots\!60\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
23 | $D_{4}$ | \( 1 - \)\(12\!\cdots\!64\)\( T + \)\(15\!\cdots\!86\)\( p T^{2} - \)\(12\!\cdots\!64\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
29 | $D_{4}$ | \( 1 + \)\(31\!\cdots\!40\)\( p T - \)\(26\!\cdots\!62\)\( p^{2} T^{2} + \)\(31\!\cdots\!40\)\( p^{32} T^{3} + p^{62} T^{4} \) | |
31 | $D_{4}$ | \( 1 + \)\(14\!\cdots\!36\)\( T + \)\(30\!\cdots\!86\)\( T^{2} + \)\(14\!\cdots\!36\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
37 | $D_{4}$ | \( 1 + \)\(47\!\cdots\!68\)\( T + \)\(13\!\cdots\!82\)\( T^{2} + \)\(47\!\cdots\!68\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
41 | $D_{4}$ | \( 1 - \)\(14\!\cdots\!84\)\( T + \)\(24\!\cdots\!46\)\( T^{2} - \)\(14\!\cdots\!84\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
43 | $D_{4}$ | \( 1 - \)\(28\!\cdots\!84\)\( T + \)\(10\!\cdots\!78\)\( T^{2} - \)\(28\!\cdots\!84\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
47 | $D_{4}$ | \( 1 + \)\(51\!\cdots\!28\)\( T + \)\(88\!\cdots\!02\)\( T^{2} + \)\(51\!\cdots\!28\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
53 | $D_{4}$ | \( 1 - \)\(61\!\cdots\!44\)\( T + \)\(61\!\cdots\!78\)\( T^{2} - \)\(61\!\cdots\!44\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
59 | $D_{4}$ | \( 1 - \)\(54\!\cdots\!80\)\( T + \)\(22\!\cdots\!18\)\( T^{2} - \)\(54\!\cdots\!80\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
61 | $D_{4}$ | \( 1 - \)\(28\!\cdots\!24\)\( T + \)\(19\!\cdots\!66\)\( T^{2} - \)\(28\!\cdots\!24\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
67 | $D_{4}$ | \( 1 - \)\(10\!\cdots\!52\)\( T + \)\(57\!\cdots\!42\)\( T^{2} - \)\(10\!\cdots\!52\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
71 | $D_{4}$ | \( 1 - \)\(58\!\cdots\!44\)\( T + \)\(57\!\cdots\!26\)\( T^{2} - \)\(58\!\cdots\!44\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
73 | $D_{4}$ | \( 1 - \)\(17\!\cdots\!64\)\( T + \)\(15\!\cdots\!78\)\( T^{2} - \)\(17\!\cdots\!64\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
79 | $D_{4}$ | \( 1 - \)\(18\!\cdots\!40\)\( T + \)\(33\!\cdots\!58\)\( T^{2} - \)\(18\!\cdots\!40\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
83 | $D_{4}$ | \( 1 - \)\(53\!\cdots\!24\)\( T + \)\(41\!\cdots\!78\)\( T^{2} - \)\(53\!\cdots\!24\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
89 | $D_{4}$ | \( 1 + \)\(75\!\cdots\!80\)\( T + \)\(31\!\cdots\!78\)\( T^{2} + \)\(75\!\cdots\!80\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
97 | $D_{4}$ | \( 1 + \)\(42\!\cdots\!28\)\( T + \)\(81\!\cdots\!02\)\( T^{2} + \)\(42\!\cdots\!28\)\( p^{31} T^{3} + p^{62} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−14.43001746334773705877343598807, −13.84203614138844073083266180466, −12.41105371858153765749923078374, −11.87716856148701995697642440913, −11.24952737001225955935701874864, −10.77638553179234885648872178839, −9.508695960247308912957377546135, −9.344886200642484944198761888823, −8.285495702833957877442910728068, −8.249202534134590961034378240617, −7.27982344695646936241333726631, −7.26941571540351477127699767725, −5.41981212374271320712452928847, −5.30216774150479921347713117739, −3.65887322428048848758089559006, −3.27712225625199937327068013358, −2.48150467550552921887619836060, −1.98951857919564664797491242082, −0.912107971976522102988485187780, −0.52924740275238647642561331536, 0.52924740275238647642561331536, 0.912107971976522102988485187780, 1.98951857919564664797491242082, 2.48150467550552921887619836060, 3.27712225625199937327068013358, 3.65887322428048848758089559006, 5.30216774150479921347713117739, 5.41981212374271320712452928847, 7.26941571540351477127699767725, 7.27982344695646936241333726631, 8.249202534134590961034378240617, 8.285495702833957877442910728068, 9.344886200642484944198761888823, 9.508695960247308912957377546135, 10.77638553179234885648872178839, 11.24952737001225955935701874864, 11.87716856148701995697642440913, 12.41105371858153765749923078374, 13.84203614138844073083266180466, 14.43001746334773705877343598807