Dirichlet series
L(s) = 1 | + 3.27e4·2-s − 3.64e6·3-s + 8.05e8·4-s + 1.22e10·5-s − 1.19e11·6-s − 2.61e12·7-s + 1.75e13·8-s − 3.69e13·9-s + 4.00e14·10-s − 6.09e14·11-s − 2.93e15·12-s − 2.30e16·13-s − 8.58e16·14-s − 4.44e16·15-s + 3.60e17·16-s − 2.12e17·17-s − 1.21e18·18-s − 1.55e18·19-s + 9.83e18·20-s + 9.54e18·21-s − 1.99e19·22-s + 4.85e19·23-s − 6.41e19·24-s + 1.11e20·25-s − 7.56e20·26-s + 6.75e19·27-s − 2.10e21·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.439·3-s + 3/2·4-s + 0.894·5-s − 0.622·6-s − 1.46·7-s + 1.41·8-s − 0.538·9-s + 1.26·10-s − 0.484·11-s − 0.659·12-s − 1.62·13-s − 2.06·14-s − 0.393·15-s + 5/4·16-s − 0.306·17-s − 0.761·18-s − 0.445·19-s + 1.34·20-s + 0.642·21-s − 0.684·22-s + 0.873·23-s − 0.622·24-s + 3/5·25-s − 2.29·26-s + 0.118·27-s − 2.19·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(2838.54\) |
Root analytic conductor: | \(7.29918\) |
Motivic weight: | \(29\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(2\) |
Selberg data: | \((4,\ 100,\ (\ :29/2, 29/2),\ 1)\) |
Particular Values
\(L(15)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{31}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 - p^{14} T )^{2} \) |
5 | $C_1$ | \( ( 1 - p^{14} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 + 404972 p^{2} T + 22964109266 p^{7} T^{2} + 404972 p^{31} T^{3} + p^{58} T^{4} \) |
7 | $D_{4}$ | \( 1 + 374284647188 p T + \)\(23\!\cdots\!46\)\( p^{3} T^{2} + 374284647188 p^{30} T^{3} + p^{58} T^{4} \) | |
11 | $D_{4}$ | \( 1 + 5038027988496 p^{2} T + \)\(13\!\cdots\!66\)\( p^{3} T^{2} + 5038027988496 p^{31} T^{3} + p^{58} T^{4} \) | |
13 | $D_{4}$ | \( 1 + 1775541995838116 p T + \)\(28\!\cdots\!98\)\( p^{2} T^{2} + 1775541995838116 p^{30} T^{3} + p^{58} T^{4} \) | |
17 | $D_{4}$ | \( 1 + 212788505698107756 T + \)\(45\!\cdots\!34\)\( p T^{2} + 212788505698107756 p^{29} T^{3} + p^{58} T^{4} \) | |
19 | $D_{4}$ | \( 1 + 1552916806248440360 T + \)\(87\!\cdots\!82\)\( p T^{2} + 1552916806248440360 p^{29} T^{3} + p^{58} T^{4} \) | |
23 | $D_{4}$ | \( 1 - 91813257293395308 p^{2} T + \)\(12\!\cdots\!58\)\( p^{2} T^{2} - 91813257293395308 p^{31} T^{3} + p^{58} T^{4} \) | |
29 | $D_{4}$ | \( 1 + \)\(95\!\cdots\!40\)\( T + \)\(14\!\cdots\!38\)\( T^{2} + \)\(95\!\cdots\!40\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
31 | $D_{4}$ | \( 1 + \)\(65\!\cdots\!56\)\( T + \)\(34\!\cdots\!26\)\( T^{2} + \)\(65\!\cdots\!56\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
37 | $D_{4}$ | \( 1 - \)\(66\!\cdots\!64\)\( T + \)\(70\!\cdots\!78\)\( T^{2} - \)\(66\!\cdots\!64\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
41 | $D_{4}$ | \( 1 + \)\(91\!\cdots\!76\)\( T + \)\(91\!\cdots\!66\)\( T^{2} + \)\(91\!\cdots\!76\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
43 | $D_{4}$ | \( 1 + \)\(23\!\cdots\!88\)\( T + \)\(11\!\cdots\!22\)\( T^{2} + \)\(23\!\cdots\!88\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
47 | $D_{4}$ | \( 1 - \)\(31\!\cdots\!24\)\( T + \)\(61\!\cdots\!78\)\( T^{2} - \)\(31\!\cdots\!24\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
53 | $D_{4}$ | \( 1 + \)\(20\!\cdots\!48\)\( T + \)\(27\!\cdots\!42\)\( T^{2} + \)\(20\!\cdots\!48\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
59 | $D_{4}$ | \( 1 + \)\(56\!\cdots\!80\)\( T + \)\(37\!\cdots\!78\)\( T^{2} + \)\(56\!\cdots\!80\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
61 | $D_{4}$ | \( 1 + \)\(19\!\cdots\!16\)\( T + \)\(18\!\cdots\!46\)\( T^{2} + \)\(19\!\cdots\!16\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
67 | $D_{4}$ | \( 1 + \)\(19\!\cdots\!56\)\( T + \)\(14\!\cdots\!78\)\( T^{2} + \)\(19\!\cdots\!56\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
71 | $D_{4}$ | \( 1 - \)\(88\!\cdots\!64\)\( T + \)\(97\!\cdots\!86\)\( T^{2} - \)\(88\!\cdots\!64\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
73 | $D_{4}$ | \( 1 + \)\(12\!\cdots\!68\)\( T + \)\(16\!\cdots\!82\)\( T^{2} + \)\(12\!\cdots\!68\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
79 | $D_{4}$ | \( 1 + \)\(55\!\cdots\!40\)\( T + \)\(21\!\cdots\!38\)\( T^{2} + \)\(55\!\cdots\!40\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
83 | $D_{4}$ | \( 1 - \)\(14\!\cdots\!72\)\( T + \)\(13\!\cdots\!02\)\( T^{2} - \)\(14\!\cdots\!72\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
89 | $D_{4}$ | \( 1 - \)\(37\!\cdots\!80\)\( T + \)\(83\!\cdots\!18\)\( T^{2} - \)\(37\!\cdots\!80\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
97 | $D_{4}$ | \( 1 + \)\(23\!\cdots\!76\)\( T + \)\(25\!\cdots\!78\)\( T^{2} + \)\(23\!\cdots\!76\)\( p^{29} T^{3} + p^{58} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−13.47122809353914777495695037298, −13.17600699872056750082048963654, −12.54520928142389245067565693040, −12.07521850917296614671572280839, −10.99402256385764036356331532487, −10.57132827178239129074568349289, −9.572656168637783902356161680860, −9.204904545039867475866760619801, −7.64516201288252854182410150876, −7.05379799300279339513478686244, −6.12825567625343865066301396521, −5.97799372651180405919884713195, −5.04523612758423526662815307696, −4.59964177228313023993288801237, −3.39772588678431524498655570298, −2.88650740955351549416613284078, −2.32884995884816183750435443939, −1.50265197202637292638843371068, 0, 0, 1.50265197202637292638843371068, 2.32884995884816183750435443939, 2.88650740955351549416613284078, 3.39772588678431524498655570298, 4.59964177228313023993288801237, 5.04523612758423526662815307696, 5.97799372651180405919884713195, 6.12825567625343865066301396521, 7.05379799300279339513478686244, 7.64516201288252854182410150876, 9.204904545039867475866760619801, 9.572656168637783902356161680860, 10.57132827178239129074568349289, 10.99402256385764036356331532487, 12.07521850917296614671572280839, 12.54520928142389245067565693040, 13.17600699872056750082048963654, 13.47122809353914777495695037298