Dirichlet series
L(s) = 1 | − 8.19e3·2-s − 4.38e5·3-s + 5.03e7·4-s + 4.88e8·5-s + 3.59e9·6-s − 3.40e10·7-s − 2.74e11·8-s + 4.61e11·9-s − 4.00e12·10-s + 1.93e13·11-s − 2.20e13·12-s − 1.27e14·13-s + 2.78e14·14-s − 2.14e14·15-s + 1.40e15·16-s − 2.99e15·17-s − 3.78e15·18-s + 1.35e13·19-s + 2.45e16·20-s + 1.49e16·21-s − 1.58e17·22-s − 1.76e17·23-s + 1.20e17·24-s + 1.78e17·25-s + 1.04e18·26-s − 6.92e17·27-s − 1.71e18·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 0.476·3-s + 3/2·4-s + 0.894·5-s + 0.673·6-s − 0.928·7-s − 1.41·8-s + 0.545·9-s − 1.26·10-s + 1.85·11-s − 0.714·12-s − 1.52·13-s + 1.31·14-s − 0.426·15-s + 5/4·16-s − 1.24·17-s − 0.771·18-s + 0.00140·19-s + 1.34·20-s + 0.442·21-s − 2.62·22-s − 1.68·23-s + 0.673·24-s + 3/5·25-s + 2.15·26-s − 0.887·27-s − 1.39·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(1568.13\) |
Root analytic conductor: | \(6.29282\) |
Motivic weight: | \(25\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 100,\ (\ :25/2, 25/2),\ 1)\) |
Particular Values
\(L(13)\) | \(\approx\) | \(0.7521744680\) |
\(L(\frac12)\) | \(\approx\) | \(0.7521744680\) |
\(L(\frac{27}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 + p^{12} T )^{2} \) |
5 | $C_1$ | \( ( 1 - p^{12} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 + 16244 p^{3} T - 369862282 p^{6} T^{2} + 16244 p^{28} T^{3} + p^{50} T^{4} \) |
7 | $D_{4}$ | \( 1 + 4858370948 p T + 1231557749974659438 p^{4} T^{2} + 4858370948 p^{26} T^{3} + p^{50} T^{4} \) | |
11 | $D_{4}$ | \( 1 - 159873411504 p^{2} T + \)\(25\!\cdots\!06\)\( p T^{2} - 159873411504 p^{27} T^{3} + p^{50} T^{4} \) | |
13 | $D_{4}$ | \( 1 + 127796048033588 T + \)\(10\!\cdots\!94\)\( p T^{2} + 127796048033588 p^{25} T^{3} + p^{50} T^{4} \) | |
17 | $D_{4}$ | \( 1 + 2998857935578476 T + \)\(23\!\cdots\!74\)\( p T^{2} + 2998857935578476 p^{25} T^{3} + p^{50} T^{4} \) | |
19 | $D_{4}$ | \( 1 - 13534782395320 T + \)\(81\!\cdots\!42\)\( p T^{2} - 13534782395320 p^{25} T^{3} + p^{50} T^{4} \) | |
23 | $D_{4}$ | \( 1 + 7686979164461916 p T + \)\(48\!\cdots\!98\)\( p^{2} T^{2} + 7686979164461916 p^{26} T^{3} + p^{50} T^{4} \) | |
29 | $D_{4}$ | \( 1 + 1676097487309033380 T + \)\(69\!\cdots\!98\)\( T^{2} + 1676097487309033380 p^{25} T^{3} + p^{50} T^{4} \) | |
31 | $D_{4}$ | \( 1 - 7125865156346376664 T + \)\(43\!\cdots\!26\)\( T^{2} - 7125865156346376664 p^{25} T^{3} + p^{50} T^{4} \) | |
37 | $D_{4}$ | \( 1 - 84009823521808944364 T + \)\(48\!\cdots\!38\)\( T^{2} - 84009823521808944364 p^{25} T^{3} + p^{50} T^{4} \) | |
41 | $D_{4}$ | \( 1 + \)\(27\!\cdots\!56\)\( T + \)\(47\!\cdots\!86\)\( T^{2} + \)\(27\!\cdots\!56\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
43 | $D_{4}$ | \( 1 - \)\(42\!\cdots\!32\)\( T + \)\(12\!\cdots\!42\)\( T^{2} - \)\(42\!\cdots\!32\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
47 | $D_{4}$ | \( 1 - \)\(11\!\cdots\!44\)\( T + \)\(13\!\cdots\!98\)\( T^{2} - \)\(11\!\cdots\!44\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
53 | $D_{4}$ | \( 1 - \)\(41\!\cdots\!52\)\( T + \)\(29\!\cdots\!62\)\( T^{2} - \)\(41\!\cdots\!52\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
59 | $D_{4}$ | \( 1 + \)\(37\!\cdots\!60\)\( T - \)\(67\!\cdots\!02\)\( T^{2} + \)\(37\!\cdots\!60\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
61 | $D_{4}$ | \( 1 - \)\(10\!\cdots\!24\)\( T + \)\(85\!\cdots\!46\)\( T^{2} - \)\(10\!\cdots\!24\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
67 | $D_{4}$ | \( 1 + \)\(11\!\cdots\!56\)\( T + \)\(10\!\cdots\!98\)\( T^{2} + \)\(11\!\cdots\!56\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
71 | $D_{4}$ | \( 1 - \)\(12\!\cdots\!24\)\( T + \)\(15\!\cdots\!46\)\( T^{2} - \)\(12\!\cdots\!24\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
73 | $D_{4}$ | \( 1 - \)\(15\!\cdots\!72\)\( T - \)\(29\!\cdots\!18\)\( T^{2} - \)\(15\!\cdots\!72\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
79 | $D_{4}$ | \( 1 - \)\(82\!\cdots\!40\)\( T + \)\(68\!\cdots\!98\)\( T^{2} - \)\(82\!\cdots\!40\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
83 | $D_{4}$ | \( 1 - \)\(10\!\cdots\!52\)\( T + \)\(58\!\cdots\!62\)\( T^{2} - \)\(10\!\cdots\!52\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
89 | $D_{4}$ | \( 1 - \)\(50\!\cdots\!80\)\( T + \)\(16\!\cdots\!98\)\( T^{2} - \)\(50\!\cdots\!80\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
97 | $D_{4}$ | \( 1 - \)\(23\!\cdots\!64\)\( T + \)\(86\!\cdots\!38\)\( T^{2} - \)\(23\!\cdots\!64\)\( p^{25} T^{3} + p^{50} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−15.35560538302981314246190502016, −14.69647531187002383560856252262, −13.76532216672891658499231437872, −12.92441769455216972812422156873, −11.94776194834140316010980880996, −11.72639571803384056535805664769, −10.55399977179044430738966346455, −9.921451582136874571805547122891, −9.424417231017288195976173630680, −9.086705326735111049542067541225, −7.83649584707832287144573750568, −7.02974572250362034723139795297, −6.25875615171753723974885942184, −6.13486572165067192589169489293, −4.64732143207354616496996889314, −3.73951058896370321078078363188, −2.42613107860636242910358284816, −2.03057451311127191073250853394, −1.10375898002819118815462173163, −0.35983540391047310159146841172, 0.35983540391047310159146841172, 1.10375898002819118815462173163, 2.03057451311127191073250853394, 2.42613107860636242910358284816, 3.73951058896370321078078363188, 4.64732143207354616496996889314, 6.13486572165067192589169489293, 6.25875615171753723974885942184, 7.02974572250362034723139795297, 7.83649584707832287144573750568, 9.086705326735111049542067541225, 9.424417231017288195976173630680, 9.921451582136874571805547122891, 10.55399977179044430738966346455, 11.72639571803384056535805664769, 11.94776194834140316010980880996, 12.92441769455216972812422156873, 13.76532216672891658499231437872, 14.69647531187002383560856252262, 15.35560538302981314246190502016