Properties

Label 4-1095200-1.1-c1e2-0-9
Degree $4$
Conductor $1095200$
Sign $1$
Analytic cond. $69.8309$
Root an. cond. $2.89075$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s − 2·9-s + 2·10-s + 4·13-s + 16-s + 12·17-s − 2·18-s + 2·20-s + 3·25-s + 4·26-s + 12·29-s + 32-s + 12·34-s − 2·36-s + 2·37-s + 2·40-s − 12·41-s − 4·45-s − 10·49-s + 3·50-s + 4·52-s + 12·53-s + 12·58-s − 20·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s − 2/3·9-s + 0.632·10-s + 1.10·13-s + 1/4·16-s + 2.91·17-s − 0.471·18-s + 0.447·20-s + 3/5·25-s + 0.784·26-s + 2.22·29-s + 0.176·32-s + 2.05·34-s − 1/3·36-s + 0.328·37-s + 0.316·40-s − 1.87·41-s − 0.596·45-s − 1.42·49-s + 0.424·50-s + 0.554·52-s + 1.64·53-s + 1.57·58-s − 2.56·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1095200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1095200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1095200\)    =    \(2^{5} \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(69.8309\)
Root analytic conductor: \(2.89075\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1095200,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.969683988\)
\(L(\frac12)\) \(\approx\) \(4.969683988\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_1$ \( ( 1 - T )^{2} \)
37$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.191103303293285704368637540717, −7.38307853599763365662944352653, −7.37364372891229977185623115606, −6.40980423427948262053439128925, −6.24527726803627967890931657857, −5.87742893251240658386511463008, −5.49324095653367495167136231203, −4.80762486474812590647702092154, −4.78046421920466718576600337385, −3.69764756556049564109121180323, −3.29880100176274410685427430205, −3.06956943298945243015211313058, −2.32883355551645860271045039470, −1.44505436450462837187908934432, −1.03875136195910076855341646601, 1.03875136195910076855341646601, 1.44505436450462837187908934432, 2.32883355551645860271045039470, 3.06956943298945243015211313058, 3.29880100176274410685427430205, 3.69764756556049564109121180323, 4.78046421920466718576600337385, 4.80762486474812590647702092154, 5.49324095653367495167136231203, 5.87742893251240658386511463008, 6.24527726803627967890931657857, 6.40980423427948262053439128925, 7.37364372891229977185623115606, 7.38307853599763365662944352653, 8.191103303293285704368637540717

Graph of the $Z$-function along the critical line