L(s) = 1 | + 2·7-s + 9-s − 10·25-s − 12·29-s + 4·37-s − 8·43-s − 3·49-s + 12·53-s + 2·63-s − 20·67-s + 24·71-s + 16·79-s + 81-s − 24·107-s + 28·109-s + 12·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + ⋯ |
L(s) = 1 | + 0.755·7-s + 1/3·9-s − 2·25-s − 2.22·29-s + 0.657·37-s − 1.21·43-s − 3/7·49-s + 1.64·53-s + 0.251·63-s − 2.44·67-s + 2.84·71-s + 1.80·79-s + 1/9·81-s − 2.32·107-s + 2.68·109-s + 1.12·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1/13·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1192464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1192464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 7 | $C_2$ | \( 1 - 2 T + p T^{2} \) |
| 13 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 5 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.86871640882441783507560416572, −7.63751922966226696428333146989, −6.84970961425661294350595833560, −6.65843891177652373785895186115, −5.80908037906310159495222835771, −5.74410266320392890700491858552, −5.11454570698520102977754794044, −4.70428189754287337615499396994, −3.99747189532817479880871482610, −3.80067854107620357152276821608, −3.19862495704087502707534439075, −2.15249025710140806520166174974, −2.03881758362108754018941589683, −1.20293849450464588381831778675, 0,
1.20293849450464588381831778675, 2.03881758362108754018941589683, 2.15249025710140806520166174974, 3.19862495704087502707534439075, 3.80067854107620357152276821608, 3.99747189532817479880871482610, 4.70428189754287337615499396994, 5.11454570698520102977754794044, 5.74410266320392890700491858552, 5.80908037906310159495222835771, 6.65843891177652373785895186115, 6.84970961425661294350595833560, 7.63751922966226696428333146989, 7.86871640882441783507560416572