Properties

Label 4-1078e2-1.1-c1e2-0-39
Degree $4$
Conductor $1162084$
Sign $1$
Analytic cond. $74.0954$
Root an. cond. $2.93391$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s − 4·9-s − 2·11-s + 5·16-s + 8·18-s + 4·22-s − 4·23-s − 8·25-s − 12·29-s − 6·32-s − 12·36-s − 4·37-s + 8·43-s − 6·44-s + 8·46-s + 16·50-s − 24·53-s + 24·58-s + 7·64-s − 4·67-s − 20·71-s + 16·72-s + 8·74-s − 16·79-s + 7·81-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.41·8-s − 4/3·9-s − 0.603·11-s + 5/4·16-s + 1.88·18-s + 0.852·22-s − 0.834·23-s − 8/5·25-s − 2.22·29-s − 1.06·32-s − 2·36-s − 0.657·37-s + 1.21·43-s − 0.904·44-s + 1.17·46-s + 2.26·50-s − 3.29·53-s + 3.15·58-s + 7/8·64-s − 0.488·67-s − 2.37·71-s + 1.88·72-s + 0.929·74-s − 1.80·79-s + 7/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1162084\)    =    \(2^{2} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(74.0954\)
Root analytic conductor: \(2.93391\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1162084,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 76 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 100 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 128 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.450547251815216094657338083391, −9.411203761939149041622008443752, −8.828997911383978720063618881322, −8.540367026777806779843138756859, −7.85293374997188759826920669169, −7.84082279963447650020500724430, −7.47999686336930545781229172891, −6.88974922526010818255590206799, −6.21031904684137313513723697830, −5.97207898753295444905408185419, −5.57508637676095728193788758485, −5.18969643608982086215754502890, −4.24845863542732783150254953763, −3.83061144755951801039264188141, −2.99381486421233514984700654506, −2.80908133921127107683920355466, −1.89920185192110653583692761736, −1.60768512466675242484261785039, 0, 0, 1.60768512466675242484261785039, 1.89920185192110653583692761736, 2.80908133921127107683920355466, 2.99381486421233514984700654506, 3.83061144755951801039264188141, 4.24845863542732783150254953763, 5.18969643608982086215754502890, 5.57508637676095728193788758485, 5.97207898753295444905408185419, 6.21031904684137313513723697830, 6.88974922526010818255590206799, 7.47999686336930545781229172891, 7.84082279963447650020500724430, 7.85293374997188759826920669169, 8.540367026777806779843138756859, 8.828997911383978720063618881322, 9.411203761939149041622008443752, 9.450547251815216094657338083391

Graph of the $Z$-function along the critical line