Properties

Label 4-1078e2-1.1-c1e2-0-25
Degree $4$
Conductor $1162084$
Sign $-1$
Analytic cond. $74.0954$
Root an. cond. $2.93391$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 3·9-s − 2·11-s + 5·16-s − 6·18-s + 4·22-s − 4·23-s + 6·25-s + 2·29-s − 6·32-s + 9·36-s − 4·37-s + 8·43-s − 6·44-s + 8·46-s − 12·50-s − 24·53-s − 4·58-s + 7·64-s − 18·67-s + 8·71-s − 12·72-s + 8·74-s − 30·79-s − 16·86-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.41·8-s + 9-s − 0.603·11-s + 5/4·16-s − 1.41·18-s + 0.852·22-s − 0.834·23-s + 6/5·25-s + 0.371·29-s − 1.06·32-s + 3/2·36-s − 0.657·37-s + 1.21·43-s − 0.904·44-s + 1.17·46-s − 1.69·50-s − 3.29·53-s − 0.525·58-s + 7/8·64-s − 2.19·67-s + 0.949·71-s − 1.41·72-s + 0.929·74-s − 3.37·79-s − 1.72·86-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1162084\)    =    \(2^{2} \cdot 7^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(74.0954\)
Root analytic conductor: \(2.93391\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1162084,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64097690685396419289660444604, −7.56213634158443825645108758370, −7.20513174069266291888622377347, −6.65817966824607617360279018406, −6.15492001133738256684135725184, −5.89723575121056028210205499246, −5.17706309631633075806282122025, −4.51301965109001578483282794481, −4.36076978658625870223006743676, −3.20189338397603369789244092199, −3.15391324087188614918799611445, −2.23521168334471743395036156035, −1.69694527723194007972518751957, −1.05816035148539148989806713716, 0, 1.05816035148539148989806713716, 1.69694527723194007972518751957, 2.23521168334471743395036156035, 3.15391324087188614918799611445, 3.20189338397603369789244092199, 4.36076978658625870223006743676, 4.51301965109001578483282794481, 5.17706309631633075806282122025, 5.89723575121056028210205499246, 6.15492001133738256684135725184, 6.65817966824607617360279018406, 7.20513174069266291888622377347, 7.56213634158443825645108758370, 7.64097690685396419289660444604

Graph of the $Z$-function along the critical line