Properties

Label 4-1078e2-1.1-c1e2-0-18
Degree $4$
Conductor $1162084$
Sign $1$
Analytic cond. $74.0954$
Root an. cond. $2.93391$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 5·9-s + 6·11-s + 16-s − 2·25-s + 6·29-s + 5·36-s − 2·37-s − 12·43-s + 6·44-s + 64-s − 4·67-s + 6·71-s + 9·79-s + 16·81-s + 30·99-s − 2·100-s + 6·107-s − 6·109-s + 9·113-s + 6·116-s + 25·121-s + 127-s + 131-s + 137-s + 139-s + 5·144-s + ⋯
L(s)  = 1  + 1/2·4-s + 5/3·9-s + 1.80·11-s + 1/4·16-s − 2/5·25-s + 1.11·29-s + 5/6·36-s − 0.328·37-s − 1.82·43-s + 0.904·44-s + 1/8·64-s − 0.488·67-s + 0.712·71-s + 1.01·79-s + 16/9·81-s + 3.01·99-s − 1/5·100-s + 0.580·107-s − 0.574·109-s + 0.846·113-s + 0.557·116-s + 2.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/12·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1162084\)    =    \(2^{2} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(74.0954\)
Root analytic conductor: \(2.93391\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1162084,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.472225579\)
\(L(\frac12)\) \(\approx\) \(3.472225579\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7 \( 1 \)
11$C_2$ \( 1 - 6 T + p T^{2} \)
good3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 71 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 143 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.081078843453114932365489248854, −7.40964628891965176435188151100, −7.17085081288222948362782559516, −6.63676457790334775624131151776, −6.48186608658561181970871658571, −6.08075294880438178112826746569, −5.30418516764757583867614470852, −4.79603712547085432561880203203, −4.40744018923658496387917148151, −3.79095818902129493363256903544, −3.59149871251627751883157105082, −2.82215452680288883413181490015, −1.93496934573361604221514240850, −1.56948866689806376200060301045, −0.920181782416923008352170535454, 0.920181782416923008352170535454, 1.56948866689806376200060301045, 1.93496934573361604221514240850, 2.82215452680288883413181490015, 3.59149871251627751883157105082, 3.79095818902129493363256903544, 4.40744018923658496387917148151, 4.79603712547085432561880203203, 5.30418516764757583867614470852, 6.08075294880438178112826746569, 6.48186608658561181970871658571, 6.63676457790334775624131151776, 7.17085081288222948362782559516, 7.40964628891965176435188151100, 8.081078843453114932365489248854

Graph of the $Z$-function along the critical line