Properties

Label 4-1078e2-1.1-c1e2-0-11
Degree $4$
Conductor $1162084$
Sign $1$
Analytic cond. $74.0954$
Root an. cond. $2.93391$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s − 4·9-s − 2·11-s + 5·16-s − 8·18-s − 4·22-s + 12·23-s + 8·25-s + 4·29-s + 6·32-s − 12·36-s − 20·37-s − 16·43-s − 6·44-s + 24·46-s + 16·50-s + 16·53-s + 8·58-s + 7·64-s + 4·67-s − 4·71-s − 16·72-s − 40·74-s + 32·79-s + 7·81-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.41·8-s − 4/3·9-s − 0.603·11-s + 5/4·16-s − 1.88·18-s − 0.852·22-s + 2.50·23-s + 8/5·25-s + 0.742·29-s + 1.06·32-s − 2·36-s − 3.28·37-s − 2.43·43-s − 0.904·44-s + 3.53·46-s + 2.26·50-s + 2.19·53-s + 1.05·58-s + 7/8·64-s + 0.488·67-s − 0.474·71-s − 1.88·72-s − 4.64·74-s + 3.60·79-s + 7/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1162084\)    =    \(2^{2} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(74.0954\)
Root analytic conductor: \(2.93391\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1162084,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.731708082\)
\(L(\frac12)\) \(\approx\) \(4.731708082\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
7 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 76 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 116 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 114 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 128 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 96 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31712977353414038389342658987, −9.904899840272703022667263533530, −8.909413032360724807774144812577, −8.833869790839060640010182867948, −8.588069015342010143727576601591, −8.007950184997369309371357323402, −7.31380020293928955471865897045, −7.06495967778460744130837564757, −6.50040795053666263347425379635, −6.47409897277896400238223095768, −5.46500113815737217134328084174, −5.33161816403917439284993844242, −4.90013799359119435735702638309, −4.79434884703651495756367859786, −3.67085440498159200895188491665, −3.38279488024904310793124189001, −2.99064267300105637449759917029, −2.50720231447323381580497390108, −1.78573272761699183348331402973, −0.76692540560466746681841310049, 0.76692540560466746681841310049, 1.78573272761699183348331402973, 2.50720231447323381580497390108, 2.99064267300105637449759917029, 3.38279488024904310793124189001, 3.67085440498159200895188491665, 4.79434884703651495756367859786, 4.90013799359119435735702638309, 5.33161816403917439284993844242, 5.46500113815737217134328084174, 6.47409897277896400238223095768, 6.50040795053666263347425379635, 7.06495967778460744130837564757, 7.31380020293928955471865897045, 8.007950184997369309371357323402, 8.588069015342010143727576601591, 8.833869790839060640010182867948, 8.909413032360724807774144812577, 9.904899840272703022667263533530, 10.31712977353414038389342658987

Graph of the $Z$-function along the critical line