Properties

Label 4-105e2-1.1-c1e2-0-6
Degree $4$
Conductor $11025$
Sign $1$
Analytic cond. $0.702963$
Root an. cond. $0.915657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s − 3·9-s + 5·16-s − 5·25-s − 9·36-s − 7·49-s + 3·64-s − 16·79-s + 9·81-s − 15·100-s + 36·109-s − 6·121-s + 127-s + 131-s + 137-s + 139-s − 15·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 26·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 3/2·4-s − 9-s + 5/4·16-s − 25-s − 3/2·36-s − 49-s + 3/8·64-s − 1.80·79-s + 81-s − 3/2·100-s + 3.44·109-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5/4·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11025\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.702963\)
Root analytic conductor: \(0.915657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.276665598\)
\(L(\frac12)\) \(\approx\) \(1.276665598\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
7$C_2$ \( 1 + p T^{2} \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.39180198347006955515315940491, −11.09066221447234830056192912173, −10.41847708426759381016302222103, −9.902178297422995217223054082959, −9.195894852208855145197992130941, −8.476859824538286473406516573262, −7.941677111442279895888294238773, −7.32530344519583705951706087579, −6.74326596825355683494168472273, −6.02485637757698496447060903671, −5.69965714504167507758970745344, −4.68265824508658123572721141788, −3.53599612811969903399244924614, −2.79032593121560044353740561192, −1.89843661748611384301864252053, 1.89843661748611384301864252053, 2.79032593121560044353740561192, 3.53599612811969903399244924614, 4.68265824508658123572721141788, 5.69965714504167507758970745344, 6.02485637757698496447060903671, 6.74326596825355683494168472273, 7.32530344519583705951706087579, 7.941677111442279895888294238773, 8.476859824538286473406516573262, 9.195894852208855145197992130941, 9.902178297422995217223054082959, 10.41847708426759381016302222103, 11.09066221447234830056192912173, 11.39180198347006955515315940491

Graph of the $Z$-function along the critical line