Properties

Label 4-1058e2-1.1-c3e2-0-0
Degree $4$
Conductor $1119364$
Sign $1$
Analytic cond. $3896.75$
Root an. cond. $7.90088$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 8·3-s + 12·4-s − 32·6-s + 32·8-s − 6·9-s − 96·12-s − 84·13-s + 80·16-s − 24·18-s − 256·24-s − 146·25-s − 336·26-s + 392·27-s − 44·29-s + 592·31-s + 192·32-s − 72·36-s + 672·39-s − 636·41-s − 368·47-s − 640·48-s − 270·49-s − 584·50-s − 1.00e3·52-s + 1.56e3·54-s − 176·58-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.53·3-s + 3/2·4-s − 2.17·6-s + 1.41·8-s − 2/9·9-s − 2.30·12-s − 1.79·13-s + 5/4·16-s − 0.314·18-s − 2.17·24-s − 1.16·25-s − 2.53·26-s + 2.79·27-s − 0.281·29-s + 3.42·31-s + 1.06·32-s − 1/3·36-s + 2.75·39-s − 2.42·41-s − 1.14·47-s − 1.92·48-s − 0.787·49-s − 1.65·50-s − 2.68·52-s + 3.95·54-s − 0.398·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1119364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1119364 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1119364\)    =    \(2^{2} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(3896.75\)
Root analytic conductor: \(7.90088\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1119364,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6470255950\)
\(L(\frac12)\) \(\approx\) \(0.6470255950\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p T )^{2} \)
23 \( 1 \)
good3$C_2$ \( ( 1 + 4 T + p^{3} T^{2} )^{2} \)
5$C_2^2$ \( 1 + 146 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 + 270 T^{2} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 2434 T^{2} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 42 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 9410 T^{2} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 5294 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 22 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 296 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 25490 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 318 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 59070 T^{2} + p^{6} T^{4} \)
47$C_2$ \( ( 1 + 184 T + p^{3} T^{2} )^{2} \)
53$C_2^2$ \( 1 + 289330 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 500 T + p^{3} T^{2} )^{2} \)
61$C_2^2$ \( 1 + 453026 T^{2} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 188750 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 224 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 210 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 182466 T^{2} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 184402 T^{2} + p^{6} T^{4} \)
89$C_2^2$ \( 1 + 744338 T^{2} + p^{6} T^{4} \)
97$C_2^2$ \( 1 + 277410 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.920652619416608650123012330460, −9.645582813740595956351871985673, −8.785618222073313657485952162395, −8.414914404301837080069977099496, −7.78812429942853980530227384096, −7.66289569197074928551556513183, −6.76183133325775121818288100102, −6.65337618441228491502437275743, −6.09160097720698582865031022373, −6.02990543612263850384814116027, −5.17927784856347654626433937946, −5.11762209569810079278331113744, −4.59432108303203310397189840610, −4.47183464344368122355556214479, −3.30210050984986435809655227221, −3.17232301839513480747010235818, −2.50299556306513477633871717902, −1.96198321738219333673548290917, −1.06248712243162700266691420609, −0.18225839287185132476268210778, 0.18225839287185132476268210778, 1.06248712243162700266691420609, 1.96198321738219333673548290917, 2.50299556306513477633871717902, 3.17232301839513480747010235818, 3.30210050984986435809655227221, 4.47183464344368122355556214479, 4.59432108303203310397189840610, 5.11762209569810079278331113744, 5.17927784856347654626433937946, 6.02990543612263850384814116027, 6.09160097720698582865031022373, 6.65337618441228491502437275743, 6.76183133325775121818288100102, 7.66289569197074928551556513183, 7.78812429942853980530227384096, 8.414914404301837080069977099496, 8.785618222073313657485952162395, 9.645582813740595956351871985673, 9.920652619416608650123012330460

Graph of the $Z$-function along the critical line