Properties

Label 4-1045e2-1.1-c1e2-0-0
Degree $4$
Conductor $1092025$
Sign $1$
Analytic cond. $69.6284$
Root an. cond. $2.88866$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 5-s − 6·9-s + 5·11-s + 12·16-s + 4·20-s − 4·25-s + 24·36-s − 20·44-s + 6·45-s + 5·49-s − 5·55-s − 32·64-s − 12·80-s + 27·81-s − 30·99-s + 16·100-s + 14·121-s + 9·125-s + 127-s + 131-s + 137-s + 139-s − 72·144-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 2·4-s − 0.447·5-s − 2·9-s + 1.50·11-s + 3·16-s + 0.894·20-s − 4/5·25-s + 4·36-s − 3.01·44-s + 0.894·45-s + 5/7·49-s − 0.674·55-s − 4·64-s − 1.34·80-s + 3·81-s − 3.01·99-s + 8/5·100-s + 1.27·121-s + 0.804·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 6·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1092025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1092025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1092025\)    =    \(5^{2} \cdot 11^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(69.6284\)
Root analytic conductor: \(2.88866\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1092025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5432302084\)
\(L(\frac12)\) \(\approx\) \(0.5432302084\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( 1 + T + p T^{2} \)
11$C_2$ \( 1 - 5 T + p T^{2} \)
19$C_2$ \( 1 + p T^{2} \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - p T^{2} )^{2} \)
97$C_2$ \( ( 1 + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.257438293285400064487372330011, −7.80721810924236528989148696773, −7.42576936308490743919691601661, −6.60574857586478393452876072930, −6.22062063563158446237036032778, −5.67646921885699346859765144678, −5.46158387192313632246151765332, −4.91092734270594761008678887775, −4.27523868766142284236019982561, −4.05860439288340487411118779986, −3.39451292921803621175036861493, −3.20621111912967275630179366480, −2.24255268758052633749339242499, −1.19465266884302745044451365528, −0.39402131572052920383039003444, 0.39402131572052920383039003444, 1.19465266884302745044451365528, 2.24255268758052633749339242499, 3.20621111912967275630179366480, 3.39451292921803621175036861493, 4.05860439288340487411118779986, 4.27523868766142284236019982561, 4.91092734270594761008678887775, 5.46158387192313632246151765332, 5.67646921885699346859765144678, 6.22062063563158446237036032778, 6.60574857586478393452876072930, 7.42576936308490743919691601661, 7.80721810924236528989148696773, 8.257438293285400064487372330011

Graph of the $Z$-function along the critical line