Properties

Label 4-1045e2-1.1-c0e2-0-0
Degree $4$
Conductor $1092025$
Sign $1$
Analytic cond. $0.271986$
Root an. cond. $0.722165$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 2·8-s + 2·11-s + 2·13-s + 3·16-s − 4·22-s − 2·23-s − 25-s − 4·26-s − 4·32-s + 4·44-s + 4·46-s − 2·47-s + 2·50-s + 4·52-s + 4·64-s − 81-s − 4·88-s − 4·92-s + 4·94-s − 2·100-s − 4·104-s + 2·107-s + 3·121-s + 127-s − 4·128-s + ⋯
L(s)  = 1  − 2·2-s + 2·4-s − 2·8-s + 2·11-s + 2·13-s + 3·16-s − 4·22-s − 2·23-s − 25-s − 4·26-s − 4·32-s + 4·44-s + 4·46-s − 2·47-s + 2·50-s + 4·52-s + 4·64-s − 81-s − 4·88-s − 4·92-s + 4·94-s − 2·100-s − 4·104-s + 2·107-s + 3·121-s + 127-s − 4·128-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1092025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1092025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1092025\)    =    \(5^{2} \cdot 11^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.271986\)
Root analytic conductor: \(0.722165\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1092025,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3777158548\)
\(L(\frac12)\) \(\approx\) \(0.3777158548\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( 1 + T^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
19$C_2$ \( 1 + T^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
3$C_2^2$ \( 1 + T^{4} \)
7$C_2^2$ \( 1 + T^{4} \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
17$C_2^2$ \( 1 + T^{4} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2^2$ \( 1 + T^{4} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_2^2$ \( 1 + T^{4} \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
53$C_2^2$ \( 1 + T^{4} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2^2$ \( 1 + T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2^2$ \( 1 + T^{4} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2^2$ \( 1 + T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33475460401745601792993923074, −9.693456368266116561304895484405, −9.397071014794155632236721369133, −9.190234876684105935306729063950, −8.707675254976155888493077512234, −8.333479885990558255116293997436, −8.013869389305407121251535938426, −7.85204055585456626447240482814, −6.88366514467458759264822792460, −6.75263552876485218216078419294, −6.19626198096216368649407430673, −5.77642914467062816249419478091, −5.68826381795151903456043795518, −4.40768063736441103055922973967, −4.05035672074264593152838961880, −3.42725120732277916088107447536, −3.24554637044310628553852979076, −1.79926170213146696960084929396, −1.75206183071507496831304329491, −0.868387995510878913450839233923, 0.868387995510878913450839233923, 1.75206183071507496831304329491, 1.79926170213146696960084929396, 3.24554637044310628553852979076, 3.42725120732277916088107447536, 4.05035672074264593152838961880, 4.40768063736441103055922973967, 5.68826381795151903456043795518, 5.77642914467062816249419478091, 6.19626198096216368649407430673, 6.75263552876485218216078419294, 6.88366514467458759264822792460, 7.85204055585456626447240482814, 8.013869389305407121251535938426, 8.333479885990558255116293997436, 8.707675254976155888493077512234, 9.190234876684105935306729063950, 9.397071014794155632236721369133, 9.693456368266116561304895484405, 10.33475460401745601792993923074

Graph of the $Z$-function along the critical line