Properties

Label 4-1040e2-1.1-c1e2-0-74
Degree $4$
Conductor $1081600$
Sign $-1$
Analytic cond. $68.9637$
Root an. cond. $2.88174$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s + 2·13-s + 4·17-s + 25-s − 12·29-s − 8·37-s − 8·41-s − 2·49-s − 12·53-s − 4·61-s + 24·73-s − 5·81-s + 16·97-s − 4·101-s − 32·109-s − 12·113-s + 4·117-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 8·153-s + 157-s + 163-s + ⋯
L(s)  = 1  + 2/3·9-s + 0.554·13-s + 0.970·17-s + 1/5·25-s − 2.22·29-s − 1.31·37-s − 1.24·41-s − 2/7·49-s − 1.64·53-s − 0.512·61-s + 2.80·73-s − 5/9·81-s + 1.62·97-s − 0.398·101-s − 3.06·109-s − 1.12·113-s + 0.369·117-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.646·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1081600\)    =    \(2^{8} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(68.9637\)
Root analytic conductor: \(2.88174\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1081600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84951429451214758263854306332, −7.47643587259125679972385222496, −6.97485770792034691603790526649, −6.60312324524154505271907325056, −6.12320813931959480177999094143, −5.60564390272236477055184384349, −5.06920475838354581554294913851, −4.90846010696564572454874053650, −3.96385737832309868810367456258, −3.67984464847491695665275716720, −3.31435789907491887600027665512, −2.48478977288593538664814391224, −1.69369693360454303983029293798, −1.31967928536745446855627484797, 0, 1.31967928536745446855627484797, 1.69369693360454303983029293798, 2.48478977288593538664814391224, 3.31435789907491887600027665512, 3.67984464847491695665275716720, 3.96385737832309868810367456258, 4.90846010696564572454874053650, 5.06920475838354581554294913851, 5.60564390272236477055184384349, 6.12320813931959480177999094143, 6.60312324524154505271907325056, 6.97485770792034691603790526649, 7.47643587259125679972385222496, 7.84951429451214758263854306332

Graph of the $Z$-function along the critical line