L(s) = 1 | − 6·9-s + 2·13-s − 4·17-s + 25-s + 4·29-s − 2·49-s + 12·53-s − 4·61-s + 27·81-s + 12·101-s − 36·113-s − 12·117-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 24·153-s + 157-s + 163-s + 167-s − 9·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 2·9-s + 0.554·13-s − 0.970·17-s + 1/5·25-s + 0.742·29-s − 2/7·49-s + 1.64·53-s − 0.512·61-s + 3·81-s + 1.19·101-s − 3.38·113-s − 1.10·117-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.692·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 13 | $C_2$ | \( 1 - 2 T + p T^{2} \) |
good | 3 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 7 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 11 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 19 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 31 | $C_2^2$ | \( 1 + 2 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 - 78 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 59 | $C_2^2$ | \( 1 - 102 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 + 90 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.024762338561635951676398893461, −7.52668512990056531147246101195, −6.73365396499846531429485330405, −6.63887553252998292236543195224, −6.07733605201507322511081929032, −5.59609033182053756652584773673, −5.33920932233220908177688978829, −4.68191925429125915147748567840, −4.21268964445405022354157324458, −3.55461532612965613438819884318, −3.07591754498683287716981678805, −2.55428836467433945830332832354, −2.05880280303881900340478055324, −0.986414156455107089885761515323, 0,
0.986414156455107089885761515323, 2.05880280303881900340478055324, 2.55428836467433945830332832354, 3.07591754498683287716981678805, 3.55461532612965613438819884318, 4.21268964445405022354157324458, 4.68191925429125915147748567840, 5.33920932233220908177688978829, 5.59609033182053756652584773673, 6.07733605201507322511081929032, 6.63887553252998292236543195224, 6.73365396499846531429485330405, 7.52668512990056531147246101195, 8.024762338561635951676398893461