Properties

Label 4-1040e2-1.1-c1e2-0-2
Degree $4$
Conductor $1081600$
Sign $1$
Analytic cond. $68.9637$
Root an. cond. $2.88174$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·9-s − 2·13-s − 14·17-s + 3·25-s − 12·29-s − 2·37-s + 12·41-s − 4·45-s − 2·49-s − 4·61-s + 4·65-s − 10·73-s − 5·81-s + 28·85-s + 30·89-s − 8·97-s + 4·101-s − 12·109-s − 10·113-s − 4·117-s + 4·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 0.894·5-s + 2/3·9-s − 0.554·13-s − 3.39·17-s + 3/5·25-s − 2.22·29-s − 0.328·37-s + 1.87·41-s − 0.596·45-s − 2/7·49-s − 0.512·61-s + 0.496·65-s − 1.17·73-s − 5/9·81-s + 3.03·85-s + 3.17·89-s − 0.812·97-s + 0.398·101-s − 1.14·109-s − 0.940·113-s − 0.369·117-s + 4/11·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1081600\)    =    \(2^{8} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(68.9637\)
Root analytic conductor: \(2.88174\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1081600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6340793570\)
\(L(\frac12)\) \(\approx\) \(0.6340793570\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
13$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 - 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.889663408994127642205088075233, −7.61235167985819900020846324929, −7.28742789208806835868762617163, −6.78125754641445802626921354443, −6.48951780063079708387665227484, −5.95457467179700615796875041208, −5.30720441303741072337697813419, −4.74986597775864058336344224182, −4.34264987642983189559042284408, −4.09053621351507887332446601406, −3.55860075792206233293256152311, −2.70426791533871740541996668827, −2.22425805433938852271003824286, −1.64757392421881940461930784156, −0.34823057566950090126329869440, 0.34823057566950090126329869440, 1.64757392421881940461930784156, 2.22425805433938852271003824286, 2.70426791533871740541996668827, 3.55860075792206233293256152311, 4.09053621351507887332446601406, 4.34264987642983189559042284408, 4.74986597775864058336344224182, 5.30720441303741072337697813419, 5.95457467179700615796875041208, 6.48951780063079708387665227484, 6.78125754641445802626921354443, 7.28742789208806835868762617163, 7.61235167985819900020846324929, 7.889663408994127642205088075233

Graph of the $Z$-function along the critical line