Properties

Label 4-1040e2-1.1-c1e2-0-18
Degree $4$
Conductor $1081600$
Sign $1$
Analytic cond. $68.9637$
Root an. cond. $2.88174$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s − 2·13-s + 12·17-s + 25-s − 12·29-s + 10·49-s − 12·53-s + 4·61-s − 5·81-s + 12·101-s + 12·113-s + 4·117-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + 167-s − 9·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 2/3·9-s − 0.554·13-s + 2.91·17-s + 1/5·25-s − 2.22·29-s + 10/7·49-s − 1.64·53-s + 0.512·61-s − 5/9·81-s + 1.19·101-s + 1.12·113-s + 0.369·117-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.692·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1081600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1081600\)    =    \(2^{8} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(68.9637\)
Root analytic conductor: \(2.88174\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1081600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.781446210\)
\(L(\frac12)\) \(\approx\) \(1.781446210\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.049368067688690239492057464716, −7.54328532171545238027118810475, −7.40050994335286536663661064267, −6.90695357731685348218847131957, −6.13021716009703911004450435318, −5.74681685483745605922174066660, −5.53438860296070183979019233907, −5.07280932753150021555971006802, −4.46128882129286486908159596064, −3.77296452759845939670583625935, −3.32933242104588359262926881698, −3.00267622913810646403989485439, −2.18326139103868329685210851387, −1.52437544537189774161957713676, −0.62364156079794442232937391783, 0.62364156079794442232937391783, 1.52437544537189774161957713676, 2.18326139103868329685210851387, 3.00267622913810646403989485439, 3.32933242104588359262926881698, 3.77296452759845939670583625935, 4.46128882129286486908159596064, 5.07280932753150021555971006802, 5.53438860296070183979019233907, 5.74681685483745605922174066660, 6.13021716009703911004450435318, 6.90695357731685348218847131957, 7.40050994335286536663661064267, 7.54328532171545238027118810475, 8.049368067688690239492057464716

Graph of the $Z$-function along the critical line