# Properties

 Label 4-1040-1.1-c1e2-0-0 Degree $4$ Conductor $1040$ Sign $1$ Analytic cond. $0.0663113$ Root an. cond. $0.507454$ Motivic weight $1$ Arithmetic yes Rational yes Primitive yes Self-dual yes Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 − 2·4-s − 5-s − 2·9-s − 3·13-s + 4·16-s + 6·17-s + 2·20-s − 4·25-s + 4·36-s + 4·37-s + 6·41-s + 2·45-s − 4·49-s + 6·52-s − 20·61-s − 8·64-s + 3·65-s − 12·68-s + 4·73-s − 4·80-s − 5·81-s − 6·85-s + 12·89-s − 2·97-s + 8·100-s − 14·109-s + 18·113-s + ⋯
 L(s)  = 1 − 4-s − 0.447·5-s − 2/3·9-s − 0.832·13-s + 16-s + 1.45·17-s + 0.447·20-s − 4/5·25-s + 2/3·36-s + 0.657·37-s + 0.937·41-s + 0.298·45-s − 4/7·49-s + 0.832·52-s − 2.56·61-s − 64-s + 0.372·65-s − 1.45·68-s + 0.468·73-s − 0.447·80-s − 5/9·81-s − 0.650·85-s + 1.27·89-s − 0.203·97-s + 4/5·100-s − 1.34·109-s + 1.69·113-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$4$$ Conductor: $$1040$$    =    $$2^{4} \cdot 5 \cdot 13$$ Sign: $1$ Analytic conductor: $$0.0663113$$ Root analytic conductor: $$0.507454$$ Motivic weight: $$1$$ Rational: yes Arithmetic: yes Character: $\chi_{1040} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$0$$ Selberg data: $$(4,\ 1040,\ (\ :1/2, 1/2),\ 1)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.4252183223$$ $$L(\frac12)$$ $$\approx$$ $$0.4252183223$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ $$1 + p T^{2}$$
5$C_1$$\times$$C_2$ $$( 1 + T )( 1 + p T^{2} )$$
13$C_1$$\times$$C_2$ $$( 1 - T )( 1 + 4 T + p T^{2} )$$
good3$C_2$ $$( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )$$
7$C_2^2$ $$1 + 4 T^{2} + p^{2} T^{4}$$
11$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
17$C_2$$\times$$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + p T^{2} )$$
19$C_2^2$ $$1 - 2 T^{2} + p^{2} T^{4}$$
23$C_2^2$ $$1 - 26 T^{2} + p^{2} T^{4}$$
29$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
31$C_2^2$ $$1 + 10 T^{2} + p^{2} T^{4}$$
37$C_2$ $$( 1 - 2 T + p T^{2} )^{2}$$
41$C_2$$\times$$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + p T^{2} )$$
43$C_2^2$ $$1 - 50 T^{2} + p^{2} T^{4}$$
47$C_2^2$ $$1 + 4 T^{2} + p^{2} T^{4}$$
53$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
59$C_2^2$ $$1 - 98 T^{2} + p^{2} T^{4}$$
61$C_2$ $$( 1 + 10 T + p T^{2} )^{2}$$
67$C_2^2$ $$1 - 80 T^{2} + p^{2} T^{4}$$
71$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
73$C_2$ $$( 1 - 2 T + p T^{2} )^{2}$$
79$C_2$ $$( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )$$
83$C_2^2$ $$1 + 4 T^{2} + p^{2} T^{4}$$
89$C_2$ $$( 1 - 6 T + p T^{2} )^{2}$$
97$C_2$$\times$$C_2$ $$( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} )$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−14.13699022915792173969386231889, −13.73132384905208795991781869978, −12.83163059852659156555701285288, −12.29746181263507627624712512543, −11.78071801992459051606911551036, −10.94156059915506027778058563467, −10.06351729877973795451488539436, −9.546006320300178143285882286771, −8.824516499451245410039466604829, −7.87114926676923035162899791276, −7.60387813835405712032643111432, −6.11302103058811434541819221939, −5.32475119137192445904899875328, −4.35420037564796542461231717693, −3.19803865538527220934460800982, 3.19803865538527220934460800982, 4.35420037564796542461231717693, 5.32475119137192445904899875328, 6.11302103058811434541819221939, 7.60387813835405712032643111432, 7.87114926676923035162899791276, 8.824516499451245410039466604829, 9.546006320300178143285882286771, 10.06351729877973795451488539436, 10.94156059915506027778058563467, 11.78071801992459051606911551036, 12.29746181263507627624712512543, 12.83163059852659156555701285288, 13.73132384905208795991781869978, 14.13699022915792173969386231889