L(s) = 1 | − 3-s + 3·5-s + 4·7-s + 9-s + 11-s + 4·13-s − 3·15-s − 17-s − 7·19-s − 4·21-s + 5·23-s + 5·25-s − 4·27-s − 3·31-s − 33-s + 12·35-s − 3·37-s − 4·39-s − 4·41-s + 6·43-s + 3·45-s + 3·47-s + 9·49-s + 51-s + 5·53-s + 3·55-s + 7·57-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.34·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s + 1.10·13-s − 0.774·15-s − 0.242·17-s − 1.60·19-s − 0.872·21-s + 1.04·23-s + 25-s − 0.769·27-s − 0.538·31-s − 0.174·33-s + 2.02·35-s − 0.493·37-s − 0.640·39-s − 0.624·41-s + 0.914·43-s + 0.447·45-s + 0.437·47-s + 9/7·49-s + 0.140·51-s + 0.686·53-s + 0.404·55-s + 0.927·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.034461667\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.034461667\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.9740632385, −13.7178720534, −13.1837955659, −12.7431669434, −12.4425181497, −11.7387700085, −11.1919029348, −10.9342404398, −10.7626910821, −10.0887643592, −9.60945182042, −8.98875301674, −8.60507792458, −8.31490858603, −7.51168587181, −6.92725447211, −6.47213886804, −5.92337212334, −5.44070361977, −5.04090050718, −4.28700977404, −3.83388412043, −2.59267474112, −1.85888778669, −1.28348966028,
1.28348966028, 1.85888778669, 2.59267474112, 3.83388412043, 4.28700977404, 5.04090050718, 5.44070361977, 5.92337212334, 6.47213886804, 6.92725447211, 7.51168587181, 8.31490858603, 8.60507792458, 8.98875301674, 9.60945182042, 10.0887643592, 10.7626910821, 10.9342404398, 11.1919029348, 11.7387700085, 12.4425181497, 12.7431669434, 13.1837955659, 13.7178720534, 13.9740632385