Dirichlet series
L(s) = 1 | + 197·4-s + 1.62e3·9-s − 2.84e3·11-s + 1.74e4·16-s + 816·19-s + 1.74e4·29-s + 1.49e3·31-s + 3.20e5·36-s − 5.73e4·41-s − 5.60e5·44-s + 1.92e5·49-s + 1.76e5·59-s + 5.63e4·61-s + 9.05e5·64-s − 1.41e5·71-s + 1.60e5·76-s + 3.28e5·79-s + 1.21e6·81-s + 5.05e5·89-s − 4.62e6·99-s − 7.42e5·101-s + 4.77e5·109-s + 3.44e6·116-s + 2.70e6·121-s + 2.94e5·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 6.15·4-s + 6.68·9-s − 7.08·11-s + 17.0·16-s + 0.518·19-s + 3.85·29-s + 0.279·31-s + 41.1·36-s − 5.32·41-s − 43.6·44-s + 11.4·49-s + 6.59·59-s + 1.93·61-s + 27.6·64-s − 3.32·71-s + 3.19·76-s + 5.91·79-s + 20.6·81-s + 6.76·89-s − 47.3·99-s − 7.24·101-s + 3.84·109-s + 23.7·116-s + 16.8·121-s + 1.72·124-s + 5.50e−6·127-s + 5.09e−6·131-s + ⋯ |
Functional equation
Invariants
Degree: | \(36\) |
Conductor: | \(5^{36} \cdot 13^{18}\) |
Sign: | $1$ |
Analytic conductor: | \(8.06845\times 10^{30}\) |
Root analytic conductor: | \(7.21974\) |
Motivic weight: | \(5\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((36,\ 5^{36} \cdot 13^{18} ,\ ( \ : [5/2]^{18} ),\ 1 )\) |
Particular Values
\(L(3)\) | \(\approx\) | \(6.938050271\) |
\(L(\frac12)\) | \(\approx\) | \(6.938050271\) |
\(L(\frac{7}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 5 | \( 1 \) |
13 | \( ( 1 + p^{4} T^{2} )^{9} \) | |
good | 2 | \( 1 - 197 T^{2} + 21391 T^{4} - 1687867 T^{6} + 26616317 p^{2} T^{8} - 1408948947 p^{2} T^{10} + 16175526703 p^{4} T^{12} - 164875908589 p^{6} T^{14} + 1515142612545 p^{8} T^{16} - 49525168899 p^{18} T^{18} + 1515142612545 p^{18} T^{20} - 164875908589 p^{26} T^{22} + 16175526703 p^{34} T^{24} - 1408948947 p^{42} T^{26} + 26616317 p^{52} T^{28} - 1687867 p^{60} T^{30} + 21391 p^{70} T^{32} - 197 p^{80} T^{34} + p^{90} T^{36} \) |
3 | \( 1 - 1625 T^{2} + 474521 p T^{4} - 854110210 T^{6} + 389017966415 T^{8} - 47381390841967 p T^{10} + 43466838221051095 T^{12} - 11619588433681190762 T^{14} + \)\(31\!\cdots\!50\)\( p^{2} T^{16} - \)\(85\!\cdots\!84\)\( p^{4} T^{18} + \)\(31\!\cdots\!50\)\( p^{12} T^{20} - 11619588433681190762 p^{20} T^{22} + 43466838221051095 p^{30} T^{24} - 47381390841967 p^{41} T^{26} + 389017966415 p^{50} T^{28} - 854110210 p^{60} T^{30} + 474521 p^{71} T^{32} - 1625 p^{80} T^{34} + p^{90} T^{36} \) | |
7 | \( 1 - 192170 T^{2} + 18282622639 T^{4} - 1147353618549576 T^{6} + 53316097782252620615 T^{8} - \)\(19\!\cdots\!98\)\( T^{10} + \)\(58\!\cdots\!43\)\( T^{12} - \)\(14\!\cdots\!20\)\( T^{14} + \)\(30\!\cdots\!94\)\( T^{16} - \)\(56\!\cdots\!72\)\( T^{18} + \)\(30\!\cdots\!94\)\( p^{10} T^{20} - \)\(14\!\cdots\!20\)\( p^{20} T^{22} + \)\(58\!\cdots\!43\)\( p^{30} T^{24} - \)\(19\!\cdots\!98\)\( p^{40} T^{26} + 53316097782252620615 p^{50} T^{28} - 1147353618549576 p^{60} T^{30} + 18282622639 p^{70} T^{32} - 192170 p^{80} T^{34} + p^{90} T^{36} \) | |
11 | \( ( 1 + 1422 T + 1678928 T^{2} + 1457218782 T^{3} + 1113094396148 T^{4} + 714749702584070 T^{5} + 415158952053473389 T^{6} + \)\(21\!\cdots\!24\)\( T^{7} + \)\(90\!\cdots\!88\)\( p T^{8} + \)\(34\!\cdots\!96\)\( p^{2} T^{9} + \)\(90\!\cdots\!88\)\( p^{6} T^{10} + \)\(21\!\cdots\!24\)\( p^{10} T^{11} + 415158952053473389 p^{15} T^{12} + 714749702584070 p^{20} T^{13} + 1113094396148 p^{25} T^{14} + 1457218782 p^{30} T^{15} + 1678928 p^{35} T^{16} + 1422 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
17 | \( 1 - 7275344 T^{2} + 25862767234512 T^{4} - 66713441953355505338 T^{6} + \)\(15\!\cdots\!76\)\( T^{8} - \)\(32\!\cdots\!60\)\( T^{10} + \)\(60\!\cdots\!47\)\( T^{12} - \)\(10\!\cdots\!76\)\( T^{14} + \)\(16\!\cdots\!44\)\( T^{16} - \)\(24\!\cdots\!04\)\( T^{18} + \)\(16\!\cdots\!44\)\( p^{10} T^{20} - \)\(10\!\cdots\!76\)\( p^{20} T^{22} + \)\(60\!\cdots\!47\)\( p^{30} T^{24} - \)\(32\!\cdots\!60\)\( p^{40} T^{26} + \)\(15\!\cdots\!76\)\( p^{50} T^{28} - 66713441953355505338 p^{60} T^{30} + 25862767234512 p^{70} T^{32} - 7275344 p^{80} T^{34} + p^{90} T^{36} \) | |
19 | \( ( 1 - 408 T + 13870454 T^{2} - 362063268 p T^{3} + 96344427116891 T^{4} - 49973344519545016 T^{5} + \)\(44\!\cdots\!51\)\( T^{6} - \)\(21\!\cdots\!32\)\( T^{7} + \)\(14\!\cdots\!93\)\( T^{8} - \)\(33\!\cdots\!80\)\( p T^{9} + \)\(14\!\cdots\!93\)\( p^{5} T^{10} - \)\(21\!\cdots\!32\)\( p^{10} T^{11} + \)\(44\!\cdots\!51\)\( p^{15} T^{12} - 49973344519545016 p^{20} T^{13} + 96344427116891 p^{25} T^{14} - 362063268 p^{31} T^{15} + 13870454 p^{35} T^{16} - 408 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
23 | \( 1 - 51758299 T^{2} + 1344831484700204 T^{4} - \)\(23\!\cdots\!05\)\( T^{6} + \)\(32\!\cdots\!37\)\( T^{8} - \)\(37\!\cdots\!98\)\( T^{10} + \)\(15\!\cdots\!49\)\( p T^{12} - \)\(31\!\cdots\!27\)\( T^{14} + \)\(24\!\cdots\!51\)\( T^{16} - \)\(16\!\cdots\!82\)\( T^{18} + \)\(24\!\cdots\!51\)\( p^{10} T^{20} - \)\(31\!\cdots\!27\)\( p^{20} T^{22} + \)\(15\!\cdots\!49\)\( p^{31} T^{24} - \)\(37\!\cdots\!98\)\( p^{40} T^{26} + \)\(32\!\cdots\!37\)\( p^{50} T^{28} - \)\(23\!\cdots\!05\)\( p^{60} T^{30} + 1344831484700204 p^{70} T^{32} - 51758299 p^{80} T^{34} + p^{90} T^{36} \) | |
29 | \( ( 1 - 8737 T + 100263490 T^{2} - 812860482637 T^{3} + 5877575658032654 T^{4} - 37024407518884704661 T^{5} + \)\(22\!\cdots\!59\)\( T^{6} - \)\(11\!\cdots\!90\)\( T^{7} + \)\(61\!\cdots\!04\)\( T^{8} - \)\(28\!\cdots\!94\)\( T^{9} + \)\(61\!\cdots\!04\)\( p^{5} T^{10} - \)\(11\!\cdots\!90\)\( p^{10} T^{11} + \)\(22\!\cdots\!59\)\( p^{15} T^{12} - 37024407518884704661 p^{20} T^{13} + 5877575658032654 p^{25} T^{14} - 812860482637 p^{30} T^{15} + 100263490 p^{35} T^{16} - 8737 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
31 | \( ( 1 - 748 T + 75897937 T^{2} + 87335748108 T^{3} + 3911511988579655 T^{4} + 5672812818384581976 T^{5} + \)\(17\!\cdots\!49\)\( T^{6} + \)\(26\!\cdots\!84\)\( T^{7} + \)\(56\!\cdots\!86\)\( T^{8} + \)\(10\!\cdots\!68\)\( T^{9} + \)\(56\!\cdots\!86\)\( p^{5} T^{10} + \)\(26\!\cdots\!84\)\( p^{10} T^{11} + \)\(17\!\cdots\!49\)\( p^{15} T^{12} + 5672812818384581976 p^{20} T^{13} + 3911511988579655 p^{25} T^{14} + 87335748108 p^{30} T^{15} + 75897937 p^{35} T^{16} - 748 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
37 | \( 1 - 572251966 T^{2} + 166130683246580257 T^{4} - \)\(32\!\cdots\!44\)\( T^{6} + \)\(49\!\cdots\!68\)\( T^{8} - \)\(62\!\cdots\!32\)\( T^{10} + \)\(66\!\cdots\!36\)\( T^{12} - \)\(62\!\cdots\!80\)\( T^{14} + \)\(51\!\cdots\!94\)\( T^{16} - \)\(37\!\cdots\!56\)\( T^{18} + \)\(51\!\cdots\!94\)\( p^{10} T^{20} - \)\(62\!\cdots\!80\)\( p^{20} T^{22} + \)\(66\!\cdots\!36\)\( p^{30} T^{24} - \)\(62\!\cdots\!32\)\( p^{40} T^{26} + \)\(49\!\cdots\!68\)\( p^{50} T^{28} - \)\(32\!\cdots\!44\)\( p^{60} T^{30} + 166130683246580257 p^{70} T^{32} - 572251966 p^{80} T^{34} + p^{90} T^{36} \) | |
41 | \( ( 1 + 28676 T + 807443290 T^{2} + 15162634916010 T^{3} + 279540162665697191 T^{4} + \)\(41\!\cdots\!68\)\( T^{5} + \)\(61\!\cdots\!69\)\( T^{6} + \)\(77\!\cdots\!70\)\( T^{7} + \)\(96\!\cdots\!69\)\( T^{8} + \)\(10\!\cdots\!84\)\( T^{9} + \)\(96\!\cdots\!69\)\( p^{5} T^{10} + \)\(77\!\cdots\!70\)\( p^{10} T^{11} + \)\(61\!\cdots\!69\)\( p^{15} T^{12} + \)\(41\!\cdots\!68\)\( p^{20} T^{13} + 279540162665697191 p^{25} T^{14} + 15162634916010 p^{30} T^{15} + 807443290 p^{35} T^{16} + 28676 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
43 | \( 1 - 990035971 T^{2} + 519279523875318452 T^{4} - \)\(19\!\cdots\!61\)\( T^{6} + \)\(56\!\cdots\!25\)\( T^{8} - \)\(13\!\cdots\!02\)\( T^{10} + \)\(29\!\cdots\!39\)\( T^{12} - \)\(55\!\cdots\!39\)\( T^{14} + \)\(95\!\cdots\!15\)\( T^{16} - \)\(14\!\cdots\!54\)\( T^{18} + \)\(95\!\cdots\!15\)\( p^{10} T^{20} - \)\(55\!\cdots\!39\)\( p^{20} T^{22} + \)\(29\!\cdots\!39\)\( p^{30} T^{24} - \)\(13\!\cdots\!02\)\( p^{40} T^{26} + \)\(56\!\cdots\!25\)\( p^{50} T^{28} - \)\(19\!\cdots\!61\)\( p^{60} T^{30} + 519279523875318452 p^{70} T^{32} - 990035971 p^{80} T^{34} + p^{90} T^{36} \) | |
47 | \( 1 - 1825978010 T^{2} + 1843382503948781503 T^{4} - \)\(13\!\cdots\!64\)\( T^{6} + \)\(71\!\cdots\!55\)\( T^{8} - \)\(32\!\cdots\!42\)\( T^{10} + \)\(12\!\cdots\!67\)\( T^{12} - \)\(39\!\cdots\!76\)\( T^{14} + \)\(11\!\cdots\!66\)\( T^{16} - \)\(27\!\cdots\!04\)\( T^{18} + \)\(11\!\cdots\!66\)\( p^{10} T^{20} - \)\(39\!\cdots\!76\)\( p^{20} T^{22} + \)\(12\!\cdots\!67\)\( p^{30} T^{24} - \)\(32\!\cdots\!42\)\( p^{40} T^{26} + \)\(71\!\cdots\!55\)\( p^{50} T^{28} - \)\(13\!\cdots\!64\)\( p^{60} T^{30} + 1843382503948781503 p^{70} T^{32} - 1825978010 p^{80} T^{34} + p^{90} T^{36} \) | |
53 | \( 1 - 2851089603 T^{2} + 3625929698990790926 T^{4} - \)\(26\!\cdots\!39\)\( T^{6} + \)\(10\!\cdots\!58\)\( T^{8} - \)\(13\!\cdots\!83\)\( T^{10} - \)\(69\!\cdots\!81\)\( T^{12} + \)\(18\!\cdots\!14\)\( T^{14} + \)\(20\!\cdots\!32\)\( T^{16} - \)\(15\!\cdots\!78\)\( T^{18} + \)\(20\!\cdots\!32\)\( p^{10} T^{20} + \)\(18\!\cdots\!14\)\( p^{20} T^{22} - \)\(69\!\cdots\!81\)\( p^{30} T^{24} - \)\(13\!\cdots\!83\)\( p^{40} T^{26} + \)\(10\!\cdots\!58\)\( p^{50} T^{28} - \)\(26\!\cdots\!39\)\( p^{60} T^{30} + 3625929698990790926 p^{70} T^{32} - 2851089603 p^{80} T^{34} + p^{90} T^{36} \) | |
59 | \( ( 1 - 88142 T + 7408012125 T^{2} - 418488720267288 T^{3} + 21514792833002089743 T^{4} - \)\(91\!\cdots\!78\)\( T^{5} + \)\(35\!\cdots\!37\)\( T^{6} - \)\(11\!\cdots\!40\)\( T^{7} + \)\(37\!\cdots\!18\)\( T^{8} - \)\(10\!\cdots\!16\)\( T^{9} + \)\(37\!\cdots\!18\)\( p^{5} T^{10} - \)\(11\!\cdots\!40\)\( p^{10} T^{11} + \)\(35\!\cdots\!37\)\( p^{15} T^{12} - \)\(91\!\cdots\!78\)\( p^{20} T^{13} + 21514792833002089743 p^{25} T^{14} - 418488720267288 p^{30} T^{15} + 7408012125 p^{35} T^{16} - 88142 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
61 | \( ( 1 - 28165 T + 5525406634 T^{2} - 111231076019257 T^{3} + 13564817030465760102 T^{4} - \)\(20\!\cdots\!21\)\( T^{5} + \)\(20\!\cdots\!83\)\( T^{6} - \)\(23\!\cdots\!82\)\( T^{7} + \)\(23\!\cdots\!32\)\( T^{8} - \)\(22\!\cdots\!54\)\( T^{9} + \)\(23\!\cdots\!32\)\( p^{5} T^{10} - \)\(23\!\cdots\!82\)\( p^{10} T^{11} + \)\(20\!\cdots\!83\)\( p^{15} T^{12} - \)\(20\!\cdots\!21\)\( p^{20} T^{13} + 13564817030465760102 p^{25} T^{14} - 111231076019257 p^{30} T^{15} + 5525406634 p^{35} T^{16} - 28165 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
67 | \( 1 - 20432561388 T^{2} + \)\(20\!\cdots\!28\)\( T^{4} - \)\(12\!\cdots\!34\)\( T^{6} + \)\(57\!\cdots\!84\)\( T^{8} - \)\(19\!\cdots\!00\)\( T^{10} + \)\(53\!\cdots\!63\)\( T^{12} - \)\(11\!\cdots\!32\)\( T^{14} + \)\(21\!\cdots\!96\)\( T^{16} - \)\(31\!\cdots\!92\)\( T^{18} + \)\(21\!\cdots\!96\)\( p^{10} T^{20} - \)\(11\!\cdots\!32\)\( p^{20} T^{22} + \)\(53\!\cdots\!63\)\( p^{30} T^{24} - \)\(19\!\cdots\!00\)\( p^{40} T^{26} + \)\(57\!\cdots\!84\)\( p^{50} T^{28} - \)\(12\!\cdots\!34\)\( p^{60} T^{30} + \)\(20\!\cdots\!28\)\( p^{70} T^{32} - 20432561388 p^{80} T^{34} + p^{90} T^{36} \) | |
71 | \( ( 1 + 70562 T + 145680381 p T^{2} + 535896116798952 T^{3} + 45814913528036188080 T^{4} + \)\(19\!\cdots\!72\)\( T^{5} + \)\(12\!\cdots\!20\)\( T^{6} + \)\(50\!\cdots\!60\)\( T^{7} + \)\(27\!\cdots\!26\)\( T^{8} + \)\(98\!\cdots\!80\)\( T^{9} + \)\(27\!\cdots\!26\)\( p^{5} T^{10} + \)\(50\!\cdots\!60\)\( p^{10} T^{11} + \)\(12\!\cdots\!20\)\( p^{15} T^{12} + \)\(19\!\cdots\!72\)\( p^{20} T^{13} + 45814913528036188080 p^{25} T^{14} + 535896116798952 p^{30} T^{15} + 145680381 p^{36} T^{16} + 70562 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
73 | \( 1 - 19367316048 T^{2} + \)\(17\!\cdots\!62\)\( T^{4} - \)\(10\!\cdots\!46\)\( T^{6} + \)\(44\!\cdots\!39\)\( T^{8} - \)\(14\!\cdots\!64\)\( T^{10} + \)\(38\!\cdots\!57\)\( T^{12} - \)\(85\!\cdots\!62\)\( T^{14} + \)\(17\!\cdots\!41\)\( T^{16} - \)\(34\!\cdots\!60\)\( T^{18} + \)\(17\!\cdots\!41\)\( p^{10} T^{20} - \)\(85\!\cdots\!62\)\( p^{20} T^{22} + \)\(38\!\cdots\!57\)\( p^{30} T^{24} - \)\(14\!\cdots\!64\)\( p^{40} T^{26} + \)\(44\!\cdots\!39\)\( p^{50} T^{28} - \)\(10\!\cdots\!46\)\( p^{60} T^{30} + \)\(17\!\cdots\!62\)\( p^{70} T^{32} - 19367316048 p^{80} T^{34} + p^{90} T^{36} \) | |
79 | \( ( 1 - 164073 T + 28189254670 T^{2} - 2711262477059871 T^{3} + \)\(27\!\cdots\!51\)\( T^{4} - \)\(19\!\cdots\!66\)\( T^{5} + \)\(15\!\cdots\!63\)\( T^{6} - \)\(95\!\cdots\!53\)\( T^{7} + \)\(64\!\cdots\!81\)\( T^{8} - \)\(34\!\cdots\!70\)\( T^{9} + \)\(64\!\cdots\!81\)\( p^{5} T^{10} - \)\(95\!\cdots\!53\)\( p^{10} T^{11} + \)\(15\!\cdots\!63\)\( p^{15} T^{12} - \)\(19\!\cdots\!66\)\( p^{20} T^{13} + \)\(27\!\cdots\!51\)\( p^{25} T^{14} - 2711262477059871 p^{30} T^{15} + 28189254670 p^{35} T^{16} - 164073 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
83 | \( 1 - 7801150812 T^{2} + 54997530227452870688 T^{4} - \)\(32\!\cdots\!42\)\( T^{6} + \)\(14\!\cdots\!28\)\( T^{8} - \)\(67\!\cdots\!68\)\( T^{10} + \)\(31\!\cdots\!23\)\( T^{12} - \)\(13\!\cdots\!08\)\( T^{14} + \)\(56\!\cdots\!16\)\( T^{16} - \)\(23\!\cdots\!40\)\( T^{18} + \)\(56\!\cdots\!16\)\( p^{10} T^{20} - \)\(13\!\cdots\!08\)\( p^{20} T^{22} + \)\(31\!\cdots\!23\)\( p^{30} T^{24} - \)\(67\!\cdots\!68\)\( p^{40} T^{26} + \)\(14\!\cdots\!28\)\( p^{50} T^{28} - \)\(32\!\cdots\!42\)\( p^{60} T^{30} + 54997530227452870688 p^{70} T^{32} - 7801150812 p^{80} T^{34} + p^{90} T^{36} \) | |
89 | \( ( 1 - 252698 T + 59335278754 T^{2} - 8555077606937916 T^{3} + \)\(11\!\cdots\!11\)\( T^{4} - \)\(11\!\cdots\!76\)\( T^{5} + \)\(10\!\cdots\!97\)\( T^{6} - \)\(77\!\cdots\!76\)\( T^{7} + \)\(59\!\cdots\!77\)\( T^{8} - \)\(42\!\cdots\!68\)\( T^{9} + \)\(59\!\cdots\!77\)\( p^{5} T^{10} - \)\(77\!\cdots\!76\)\( p^{10} T^{11} + \)\(10\!\cdots\!97\)\( p^{15} T^{12} - \)\(11\!\cdots\!76\)\( p^{20} T^{13} + \)\(11\!\cdots\!11\)\( p^{25} T^{14} - 8555077606937916 p^{30} T^{15} + 59335278754 p^{35} T^{16} - 252698 p^{40} T^{17} + p^{45} T^{18} )^{2} \) | |
97 | \( 1 - 79630306238 T^{2} + \)\(29\!\cdots\!29\)\( T^{4} - \)\(69\!\cdots\!16\)\( T^{6} + \)\(11\!\cdots\!56\)\( T^{8} - \)\(14\!\cdots\!84\)\( T^{10} + \)\(15\!\cdots\!36\)\( T^{12} - \)\(14\!\cdots\!12\)\( T^{14} + \)\(13\!\cdots\!50\)\( T^{16} - \)\(11\!\cdots\!00\)\( T^{18} + \)\(13\!\cdots\!50\)\( p^{10} T^{20} - \)\(14\!\cdots\!12\)\( p^{20} T^{22} + \)\(15\!\cdots\!36\)\( p^{30} T^{24} - \)\(14\!\cdots\!84\)\( p^{40} T^{26} + \)\(11\!\cdots\!56\)\( p^{50} T^{28} - \)\(69\!\cdots\!16\)\( p^{60} T^{30} + \)\(29\!\cdots\!29\)\( p^{70} T^{32} - 79630306238 p^{80} T^{34} + p^{90} T^{36} \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−2.11760821420929738348589662071, −2.11426362595565290552993169300, −2.05023243237425102238506974366, −2.01807941354538640865905245492, −1.86540403610743283646628988876, −1.85393009214672584364261957931, −1.64530475903753231304915022638, −1.43612129908459935773676515898, −1.41641279620037327964612203024, −1.37378004706762973458519324724, −1.28991080725586359721882999750, −1.21033263059149027270926338228, −1.18182845500242653281802114521, −1.05602310791307346173127558315, −0.940284335217437725910994376327, −0.929598601928396284561748694266, −0.874186170545733273698688366043, −0.72583150274931120706694165845, −0.68573794385259305979094688765, −0.64512586621269880656358124284, −0.49713505281481723689920794454, −0.33727142883327324018425899725, −0.28018021364497598991012094497, −0.18475467836405768476338680412, −0.01155801536580284930525462507, 0.01155801536580284930525462507, 0.18475467836405768476338680412, 0.28018021364497598991012094497, 0.33727142883327324018425899725, 0.49713505281481723689920794454, 0.64512586621269880656358124284, 0.68573794385259305979094688765, 0.72583150274931120706694165845, 0.874186170545733273698688366043, 0.929598601928396284561748694266, 0.940284335217437725910994376327, 1.05602310791307346173127558315, 1.18182845500242653281802114521, 1.21033263059149027270926338228, 1.28991080725586359721882999750, 1.37378004706762973458519324724, 1.41641279620037327964612203024, 1.43612129908459935773676515898, 1.64530475903753231304915022638, 1.85393009214672584364261957931, 1.86540403610743283646628988876, 2.01807941354538640865905245492, 2.05023243237425102238506974366, 2.11426362595565290552993169300, 2.11760821420929738348589662071