Properties

Label 32-462e16-1.1-c1e16-0-0
Degree $32$
Conductor $4.308\times 10^{42}$
Sign $1$
Analytic cond. $1.17680\times 10^{9}$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 12·5-s − 6·7-s + 4·9-s − 4·11-s + 6·16-s − 10·19-s + 48·20-s − 4·23-s + 57·25-s − 24·28-s + 6·31-s − 72·35-s + 16·36-s + 14·37-s + 32·41-s − 16·44-s + 48·45-s − 24·47-s + 15·49-s − 48·55-s + 28·61-s − 24·63-s − 16·67-s − 56·71-s − 44·73-s − 40·76-s + ⋯
L(s)  = 1  + 2·4-s + 5.36·5-s − 2.26·7-s + 4/3·9-s − 1.20·11-s + 3/2·16-s − 2.29·19-s + 10.7·20-s − 0.834·23-s + 57/5·25-s − 4.53·28-s + 1.07·31-s − 12.1·35-s + 8/3·36-s + 2.30·37-s + 4.99·41-s − 2.41·44-s + 7.15·45-s − 3.50·47-s + 15/7·49-s − 6.47·55-s + 3.58·61-s − 3.02·63-s − 1.95·67-s − 6.64·71-s − 5.14·73-s − 4.58·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 7^{16} \cdot 11^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 7^{16} \cdot 11^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(32\)
Conductor: \(2^{16} \cdot 3^{16} \cdot 7^{16} \cdot 11^{16}\)
Sign: $1$
Analytic conductor: \(1.17680\times 10^{9}\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{462} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((32,\ 2^{16} \cdot 3^{16} \cdot 7^{16} \cdot 11^{16} ,\ ( \ : [1/2]^{16} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.675087036\)
\(L(\frac12)\) \(\approx\) \(2.675087036\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T^{2} + T^{4} )^{4} \)
3 \( ( 1 - T^{2} + T^{4} )^{4} \)
7 \( 1 + 6 T + 3 p T^{2} + 10 T^{3} - 137 T^{4} - 548 T^{5} - 284 T^{6} + 4016 T^{7} + 16958 T^{8} + 4016 p T^{9} - 284 p^{2} T^{10} - 548 p^{3} T^{11} - 137 p^{4} T^{12} + 10 p^{5} T^{13} + 3 p^{7} T^{14} + 6 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 + 4 T + 24 T^{2} + 112 T^{3} + 274 T^{4} + 1572 T^{5} + 5408 T^{6} + 18012 T^{7} + 86915 T^{8} + 18012 p T^{9} + 5408 p^{2} T^{10} + 1572 p^{3} T^{11} + 274 p^{4} T^{12} + 112 p^{5} T^{13} + 24 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
good5 \( 1 - 12 T + 87 T^{2} - 468 T^{3} + 2046 T^{4} - 7608 T^{5} + 24941 T^{6} - 74172 T^{7} + 205763 T^{8} - 546324 T^{9} + 1417364 T^{10} - 3630492 T^{11} + 9187996 T^{12} - 22829256 T^{13} + 11061364 p T^{14} - 129962868 T^{15} + 295561964 T^{16} - 129962868 p T^{17} + 11061364 p^{3} T^{18} - 22829256 p^{3} T^{19} + 9187996 p^{4} T^{20} - 3630492 p^{5} T^{21} + 1417364 p^{6} T^{22} - 546324 p^{7} T^{23} + 205763 p^{8} T^{24} - 74172 p^{9} T^{25} + 24941 p^{10} T^{26} - 7608 p^{11} T^{27} + 2046 p^{12} T^{28} - 468 p^{13} T^{29} + 87 p^{14} T^{30} - 12 p^{15} T^{31} + p^{16} T^{32} \)
13 \( ( 1 + 40 T^{2} - 8 T^{3} + 576 T^{4} + 648 T^{5} + 3672 T^{6} + 30816 T^{7} + 19294 T^{8} + 30816 p T^{9} + 3672 p^{2} T^{10} + 648 p^{3} T^{11} + 576 p^{4} T^{12} - 8 p^{5} T^{13} + 40 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
17 \( 1 - 83 T^{2} + 8 p T^{3} + 3476 T^{4} - 9688 T^{5} - 88483 T^{6} + 330960 T^{7} + 1572689 T^{8} - 363248 p T^{9} - 26163616 T^{10} + 52036944 T^{11} + 628563790 T^{12} + 195542384 T^{13} - 16654549258 T^{14} - 4829420752 T^{15} + 337953189016 T^{16} - 4829420752 p T^{17} - 16654549258 p^{2} T^{18} + 195542384 p^{3} T^{19} + 628563790 p^{4} T^{20} + 52036944 p^{5} T^{21} - 26163616 p^{6} T^{22} - 363248 p^{8} T^{23} + 1572689 p^{8} T^{24} + 330960 p^{9} T^{25} - 88483 p^{10} T^{26} - 9688 p^{11} T^{27} + 3476 p^{12} T^{28} + 8 p^{14} T^{29} - 83 p^{14} T^{30} + p^{16} T^{32} \)
19 \( 1 + 10 T - 45 T^{2} - 610 T^{3} + 1855 T^{4} + 21532 T^{5} - 86816 T^{6} - 626624 T^{7} + 3146255 T^{8} + 14837722 T^{9} - 93351433 T^{10} - 281206598 T^{11} + 2391274762 T^{12} + 204674058 p T^{13} - 54784474877 T^{14} - 26032287962 T^{15} + 1117775138348 T^{16} - 26032287962 p T^{17} - 54784474877 p^{2} T^{18} + 204674058 p^{4} T^{19} + 2391274762 p^{4} T^{20} - 281206598 p^{5} T^{21} - 93351433 p^{6} T^{22} + 14837722 p^{7} T^{23} + 3146255 p^{8} T^{24} - 626624 p^{9} T^{25} - 86816 p^{10} T^{26} + 21532 p^{11} T^{27} + 1855 p^{12} T^{28} - 610 p^{13} T^{29} - 45 p^{14} T^{30} + 10 p^{15} T^{31} + p^{16} T^{32} \)
23 \( 1 + 4 T - 41 T^{2} - 20 T^{3} + 650 T^{4} - 4928 T^{5} + 271 p T^{6} + 71332 T^{7} - 513481 T^{8} + 890932 T^{9} - 5650452 T^{10} - 16186748 T^{11} + 272810192 T^{12} - 1729443936 T^{13} + 7244408264 T^{14} + 39032598852 T^{15} - 342082835708 T^{16} + 39032598852 p T^{17} + 7244408264 p^{2} T^{18} - 1729443936 p^{3} T^{19} + 272810192 p^{4} T^{20} - 16186748 p^{5} T^{21} - 5650452 p^{6} T^{22} + 890932 p^{7} T^{23} - 513481 p^{8} T^{24} + 71332 p^{9} T^{25} + 271 p^{11} T^{26} - 4928 p^{11} T^{27} + 650 p^{12} T^{28} - 20 p^{13} T^{29} - 41 p^{14} T^{30} + 4 p^{15} T^{31} + p^{16} T^{32} \)
29 \( 1 - 220 T^{2} + 25766 T^{4} - 2101752 T^{6} + 132425201 T^{8} - 6784185928 T^{10} + 290786240918 T^{12} - 10599475438788 T^{14} + 331431007100868 T^{16} - 10599475438788 p^{2} T^{18} + 290786240918 p^{4} T^{20} - 6784185928 p^{6} T^{22} + 132425201 p^{8} T^{24} - 2101752 p^{10} T^{26} + 25766 p^{12} T^{28} - 220 p^{14} T^{30} + p^{16} T^{32} \)
31 \( 1 - 6 T + 211 T^{2} - 1194 T^{3} + 23451 T^{4} - 122748 T^{5} + 1782572 T^{6} - 8647176 T^{7} + 103630655 T^{8} - 469064958 T^{9} + 4922296683 T^{10} - 20969566134 T^{11} + 199997869402 T^{12} - 808826403210 T^{13} + 7187956918807 T^{14} - 27748250298954 T^{15} + 233495470937700 T^{16} - 27748250298954 p T^{17} + 7187956918807 p^{2} T^{18} - 808826403210 p^{3} T^{19} + 199997869402 p^{4} T^{20} - 20969566134 p^{5} T^{21} + 4922296683 p^{6} T^{22} - 469064958 p^{7} T^{23} + 103630655 p^{8} T^{24} - 8647176 p^{9} T^{25} + 1782572 p^{10} T^{26} - 122748 p^{11} T^{27} + 23451 p^{12} T^{28} - 1194 p^{13} T^{29} + 211 p^{14} T^{30} - 6 p^{15} T^{31} + p^{16} T^{32} \)
37 \( 1 - 14 T - 33 T^{2} + 1046 T^{3} + 1691 T^{4} - 53864 T^{5} - 86468 T^{6} + 2173700 T^{7} + 1235255 T^{8} - 65091530 T^{9} + 206049191 T^{10} + 759360790 T^{11} - 14671742086 T^{12} - 218657242 p T^{13} + 879590831371 T^{14} + 160835179910 T^{15} - 39314877822420 T^{16} + 160835179910 p T^{17} + 879590831371 p^{2} T^{18} - 218657242 p^{4} T^{19} - 14671742086 p^{4} T^{20} + 759360790 p^{5} T^{21} + 206049191 p^{6} T^{22} - 65091530 p^{7} T^{23} + 1235255 p^{8} T^{24} + 2173700 p^{9} T^{25} - 86468 p^{10} T^{26} - 53864 p^{11} T^{27} + 1691 p^{12} T^{28} + 1046 p^{13} T^{29} - 33 p^{14} T^{30} - 14 p^{15} T^{31} + p^{16} T^{32} \)
41 \( ( 1 - 16 T + 330 T^{2} - 3640 T^{3} + 42745 T^{4} - 362832 T^{5} + 3123194 T^{6} - 21761352 T^{7} + 152229812 T^{8} - 21761352 p T^{9} + 3123194 p^{2} T^{10} - 362832 p^{3} T^{11} + 42745 p^{4} T^{12} - 3640 p^{5} T^{13} + 330 p^{6} T^{14} - 16 p^{7} T^{15} + p^{8} T^{16} )^{2} \)
43 \( 1 - 370 T^{2} + 69205 T^{4} - 8714850 T^{6} + 829915302 T^{8} - 63533346462 T^{10} + 4048663635627 T^{12} - 219017168933710 T^{14} + 10156745084830162 T^{16} - 219017168933710 p^{2} T^{18} + 4048663635627 p^{4} T^{20} - 63533346462 p^{6} T^{22} + 829915302 p^{8} T^{24} - 8714850 p^{10} T^{26} + 69205 p^{12} T^{28} - 370 p^{14} T^{30} + p^{16} T^{32} \)
47 \( 1 + 24 T + 319 T^{2} + 3048 T^{3} + 23178 T^{4} + 148668 T^{5} + 513441 T^{6} - 2932224 T^{7} - 69320617 T^{8} - 712534932 T^{9} - 5366273204 T^{10} - 34042967316 T^{11} - 142354134896 T^{12} + 52571251464 T^{13} + 7563961844008 T^{14} + 83457296949492 T^{15} + 624119873811908 T^{16} + 83457296949492 p T^{17} + 7563961844008 p^{2} T^{18} + 52571251464 p^{3} T^{19} - 142354134896 p^{4} T^{20} - 34042967316 p^{5} T^{21} - 5366273204 p^{6} T^{22} - 712534932 p^{7} T^{23} - 69320617 p^{8} T^{24} - 2932224 p^{9} T^{25} + 513441 p^{10} T^{26} + 148668 p^{11} T^{27} + 23178 p^{12} T^{28} + 3048 p^{13} T^{29} + 319 p^{14} T^{30} + 24 p^{15} T^{31} + p^{16} T^{32} \)
53 \( 1 - 189 T^{2} - 232 T^{3} + 17439 T^{4} + 43888 T^{5} - 854100 T^{6} - 3942720 T^{7} + 233363 p T^{8} + 287201456 T^{9} + 1198176951 T^{10} - 19075388376 T^{11} - 112969340570 T^{12} + 1015766984472 T^{13} + 6717800645927 T^{14} - 24348070253360 T^{15} - 355137904117416 T^{16} - 24348070253360 p T^{17} + 6717800645927 p^{2} T^{18} + 1015766984472 p^{3} T^{19} - 112969340570 p^{4} T^{20} - 19075388376 p^{5} T^{21} + 1198176951 p^{6} T^{22} + 287201456 p^{7} T^{23} + 233363 p^{9} T^{24} - 3942720 p^{9} T^{25} - 854100 p^{10} T^{26} + 43888 p^{11} T^{27} + 17439 p^{12} T^{28} - 232 p^{13} T^{29} - 189 p^{14} T^{30} + p^{16} T^{32} \)
59 \( 1 + 206 T^{2} + 21291 T^{4} + 23424 T^{5} + 1254962 T^{6} + 4357248 T^{7} + 31229625 T^{8} + 402292608 T^{9} - 1442494564 T^{10} + 17256515712 T^{11} - 185711486594 T^{12} - 179381210496 T^{13} - 9893086439768 T^{14} - 73366314523008 T^{15} - 490118909154734 T^{16} - 73366314523008 p T^{17} - 9893086439768 p^{2} T^{18} - 179381210496 p^{3} T^{19} - 185711486594 p^{4} T^{20} + 17256515712 p^{5} T^{21} - 1442494564 p^{6} T^{22} + 402292608 p^{7} T^{23} + 31229625 p^{8} T^{24} + 4357248 p^{9} T^{25} + 1254962 p^{10} T^{26} + 23424 p^{11} T^{27} + 21291 p^{12} T^{28} + 206 p^{14} T^{30} + p^{16} T^{32} \)
61 \( 1 - 28 T + 132 T^{2} + 3320 T^{3} - 30797 T^{4} - 260388 T^{5} + 3451164 T^{6} + 15800648 T^{7} - 264155963 T^{8} - 1067754516 T^{9} + 18055205512 T^{10} + 1181688332 p T^{11} - 1214227077978 T^{12} - 4021253438196 T^{13} + 85128658602288 T^{14} + 82671310258548 T^{15} - 5243239011871242 T^{16} + 82671310258548 p T^{17} + 85128658602288 p^{2} T^{18} - 4021253438196 p^{3} T^{19} - 1214227077978 p^{4} T^{20} + 1181688332 p^{6} T^{21} + 18055205512 p^{6} T^{22} - 1067754516 p^{7} T^{23} - 264155963 p^{8} T^{24} + 15800648 p^{9} T^{25} + 3451164 p^{10} T^{26} - 260388 p^{11} T^{27} - 30797 p^{12} T^{28} + 3320 p^{13} T^{29} + 132 p^{14} T^{30} - 28 p^{15} T^{31} + p^{16} T^{32} \)
67 \( 1 + 16 T - 186 T^{2} - 4088 T^{3} + 17155 T^{4} + 531672 T^{5} - 1174782 T^{6} - 45150464 T^{7} + 109860217 T^{8} + 2760233088 T^{9} - 14334854684 T^{10} - 130824947456 T^{11} + 1614095177022 T^{12} + 4879888122672 T^{13} - 143662297955568 T^{14} - 102109742962512 T^{15} + 10522512537183234 T^{16} - 102109742962512 p T^{17} - 143662297955568 p^{2} T^{18} + 4879888122672 p^{3} T^{19} + 1614095177022 p^{4} T^{20} - 130824947456 p^{5} T^{21} - 14334854684 p^{6} T^{22} + 2760233088 p^{7} T^{23} + 109860217 p^{8} T^{24} - 45150464 p^{9} T^{25} - 1174782 p^{10} T^{26} + 531672 p^{11} T^{27} + 17155 p^{12} T^{28} - 4088 p^{13} T^{29} - 186 p^{14} T^{30} + 16 p^{15} T^{31} + p^{16} T^{32} \)
71 \( ( 1 + 28 T + 665 T^{2} + 9556 T^{3} + 124346 T^{4} + 1164764 T^{5} + 10825387 T^{6} + 79684020 T^{7} + 712940082 T^{8} + 79684020 p T^{9} + 10825387 p^{2} T^{10} + 1164764 p^{3} T^{11} + 124346 p^{4} T^{12} + 9556 p^{5} T^{13} + 665 p^{6} T^{14} + 28 p^{7} T^{15} + p^{8} T^{16} )^{2} \)
73 \( 1 + 44 T + 732 T^{2} + 5000 T^{3} + 5052 T^{4} - 60564 T^{5} - 1170168 T^{6} - 30721884 T^{7} - 151939238 T^{8} + 1947541152 T^{9} + 15985812484 T^{10} + 23523632180 T^{11} + 1180237150256 T^{12} + 10207425497860 T^{13} - 40635532820892 T^{14} + 79264670270400 T^{15} + 8440882624589587 T^{16} + 79264670270400 p T^{17} - 40635532820892 p^{2} T^{18} + 10207425497860 p^{3} T^{19} + 1180237150256 p^{4} T^{20} + 23523632180 p^{5} T^{21} + 15985812484 p^{6} T^{22} + 1947541152 p^{7} T^{23} - 151939238 p^{8} T^{24} - 30721884 p^{9} T^{25} - 1170168 p^{10} T^{26} - 60564 p^{11} T^{27} + 5052 p^{12} T^{28} + 5000 p^{13} T^{29} + 732 p^{14} T^{30} + 44 p^{15} T^{31} + p^{16} T^{32} \)
79 \( 1 + 30 T + 719 T^{2} + 12570 T^{3} + 189438 T^{4} + 2490402 T^{5} + 29620697 T^{6} + 314951958 T^{7} + 3015838143 T^{8} + 24654844776 T^{9} + 163821266684 T^{10} + 633865980192 T^{11} - 3527632354616 T^{12} - 117997166527224 T^{13} - 1739518467334544 T^{14} - 19828557434833632 T^{15} - 189428265761930420 T^{16} - 19828557434833632 p T^{17} - 1739518467334544 p^{2} T^{18} - 117997166527224 p^{3} T^{19} - 3527632354616 p^{4} T^{20} + 633865980192 p^{5} T^{21} + 163821266684 p^{6} T^{22} + 24654844776 p^{7} T^{23} + 3015838143 p^{8} T^{24} + 314951958 p^{9} T^{25} + 29620697 p^{10} T^{26} + 2490402 p^{11} T^{27} + 189438 p^{12} T^{28} + 12570 p^{13} T^{29} + 719 p^{14} T^{30} + 30 p^{15} T^{31} + p^{16} T^{32} \)
83 \( ( 1 - 4 T + 523 T^{2} - 1544 T^{3} + 123705 T^{4} - 263372 T^{5} + 17791866 T^{6} - 28394068 T^{7} + 1752220430 T^{8} - 28394068 p T^{9} + 17791866 p^{2} T^{10} - 263372 p^{3} T^{11} + 123705 p^{4} T^{12} - 1544 p^{5} T^{13} + 523 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} )^{2} \)
89 \( 1 + 36 T + 968 T^{2} + 19296 T^{3} + 325668 T^{4} + 4609212 T^{5} + 56729552 T^{6} + 597370692 T^{7} + 5319065562 T^{8} + 37089600696 T^{9} + 149466922904 T^{10} - 879537441732 T^{11} - 29159705241296 T^{12} - 437657801841588 T^{13} - 5158540285986536 T^{14} - 54240214087792200 T^{15} - 525790322706413885 T^{16} - 54240214087792200 p T^{17} - 5158540285986536 p^{2} T^{18} - 437657801841588 p^{3} T^{19} - 29159705241296 p^{4} T^{20} - 879537441732 p^{5} T^{21} + 149466922904 p^{6} T^{22} + 37089600696 p^{7} T^{23} + 5319065562 p^{8} T^{24} + 597370692 p^{9} T^{25} + 56729552 p^{10} T^{26} + 4609212 p^{11} T^{27} + 325668 p^{12} T^{28} + 19296 p^{13} T^{29} + 968 p^{14} T^{30} + 36 p^{15} T^{31} + p^{16} T^{32} \)
97 \( 1 - 608 T^{2} + 187588 T^{4} - 40328000 T^{6} + 6818823050 T^{8} - 967972100768 T^{10} + 120672937256208 T^{12} - 13517338511335328 T^{14} + 1373778662576096019 T^{16} - 13517338511335328 p^{2} T^{18} + 120672937256208 p^{4} T^{20} - 967972100768 p^{6} T^{22} + 6818823050 p^{8} T^{24} - 40328000 p^{10} T^{26} + 187588 p^{12} T^{28} - 608 p^{14} T^{30} + p^{16} T^{32} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.86583485038844440343791174153, −2.79200266224473730609400264202, −2.73247791987475130990420548460, −2.65730597214918702050135405770, −2.55486941381222994980286187477, −2.53841176807566674272546591103, −2.45587949938776929624967548817, −2.38301425617002228889269251651, −2.37227829625718092234294480479, −2.36549013963713380528654773343, −2.09020101125918315651790817300, −2.08059847909967549534933193485, −2.04465035542777424217577258005, −1.85866897173974893527635867886, −1.75050404877217984461832570197, −1.59513444495641555386660291311, −1.47651198208136099578193488988, −1.42868530370239496974236557087, −1.34126005121221608950942695869, −1.29680997988908402248701741482, −1.23320182942830634192487966893, −1.15470396450481984446168800753, −0.53711208981894313225437785757, −0.43803464919402534802219571642, −0.093167794247789739111031788439, 0.093167794247789739111031788439, 0.43803464919402534802219571642, 0.53711208981894313225437785757, 1.15470396450481984446168800753, 1.23320182942830634192487966893, 1.29680997988908402248701741482, 1.34126005121221608950942695869, 1.42868530370239496974236557087, 1.47651198208136099578193488988, 1.59513444495641555386660291311, 1.75050404877217984461832570197, 1.85866897173974893527635867886, 2.04465035542777424217577258005, 2.08059847909967549534933193485, 2.09020101125918315651790817300, 2.36549013963713380528654773343, 2.37227829625718092234294480479, 2.38301425617002228889269251651, 2.45587949938776929624967548817, 2.53841176807566674272546591103, 2.55486941381222994980286187477, 2.65730597214918702050135405770, 2.73247791987475130990420548460, 2.79200266224473730609400264202, 2.86583485038844440343791174153

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.