Properties

Label 32-273e16-1.1-c2e16-0-0
Degree $32$
Conductor $9.519\times 10^{38}$
Sign $1$
Analytic cond. $8.78948\times 10^{13}$
Root an. cond. $2.72740$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s − 8·9-s − 208·13-s + 26·16-s + 80·25-s − 32·36-s − 128·43-s − 252·49-s − 832·52-s + 184·61-s + 32·64-s + 80·79-s + 178·81-s + 320·100-s − 976·103-s + 1.66e3·117-s + 884·121-s + 127-s + 131-s + 137-s + 139-s − 208·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 4-s − 8/9·9-s − 16·13-s + 13/8·16-s + 16/5·25-s − 8/9·36-s − 2.97·43-s − 5.14·49-s − 16·52-s + 3.01·61-s + 1/2·64-s + 1.01·79-s + 2.19·81-s + 16/5·100-s − 9.47·103-s + 14.2·117-s + 7.30·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 1.44·144-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{16} \cdot 13^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 7^{16} \cdot 13^{16}\right)^{s/2} \, \Gamma_{\C}(s+1)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(32\)
Conductor: \(3^{16} \cdot 7^{16} \cdot 13^{16}\)
Sign: $1$
Analytic conductor: \(8.78948\times 10^{13}\)
Root analytic conductor: \(2.72740\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{273} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((32,\ 3^{16} \cdot 7^{16} \cdot 13^{16} ,\ ( \ : [1]^{16} ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.002241445408\)
\(L(\frac12)\) \(\approx\) \(0.002241445408\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 + 4 T^{2} - 65 T^{4} + 4 p^{4} T^{6} + p^{8} T^{8} )^{2} \)
7 \( ( 1 + 18 p T^{2} + 157 p^{2} T^{4} + 18 p^{5} T^{6} + p^{8} T^{8} )^{2} \)
13 \( ( 1 + p T )^{16} \)
good2 \( ( 1 - p T^{2} - 7 T^{4} + 21 p T^{6} - 199 T^{8} + 21 p^{5} T^{10} - 7 p^{8} T^{12} - p^{13} T^{14} + p^{16} T^{16} )^{2} \)
5 \( ( 1 - 8 p T^{2} + 742 T^{4} + 3136 p T^{6} - 654461 T^{8} + 3136 p^{5} T^{10} + 742 p^{8} T^{12} - 8 p^{13} T^{14} + p^{16} T^{16} )^{2} \)
11 \( ( 1 - 442 T^{2} + 117439 T^{4} - 21500206 T^{6} + 2997622420 T^{8} - 21500206 p^{4} T^{10} + 117439 p^{8} T^{12} - 442 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
17 \( ( 1 + 302 T^{2} + 9161 T^{4} - 25669698 T^{6} - 7862152876 T^{8} - 25669698 p^{4} T^{10} + 9161 p^{8} T^{12} + 302 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
19 \( ( 1 + 1374 T^{2} + 1156343 T^{4} + 647004234 T^{6} + 272127078852 T^{8} + 647004234 p^{4} T^{10} + 1156343 p^{8} T^{12} + 1374 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
23 \( ( 1 + 1052 T^{2} + 546314 T^{4} + 744816 T^{6} - 73975187245 T^{8} + 744816 p^{4} T^{10} + 546314 p^{8} T^{12} + 1052 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
29 \( ( 1 - 1418 T^{2} + 1641275 T^{4} - 1418 p^{4} T^{6} + p^{8} T^{8} )^{4} \)
31 \( ( 1 + 3480 T^{2} + 7240070 T^{4} + 10521042240 T^{6} + 11683014553059 T^{8} + 10521042240 p^{4} T^{10} + 7240070 p^{8} T^{12} + 3480 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
37 \( ( 1 + 4356 T^{2} + 10758698 T^{4} + 19461370896 T^{6} + 28429090767027 T^{8} + 19461370896 p^{4} T^{10} + 10758698 p^{8} T^{12} + 4356 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
41 \( ( 1 + 4196 T^{2} + 9101318 T^{4} + 4196 p^{4} T^{6} + p^{8} T^{8} )^{4} \)
43 \( ( 1 + 16 T + 3740 T^{2} + 16 p^{2} T^{3} + p^{4} T^{4} )^{8} \)
47 \( ( 1 - 3974 T^{2} + 5729423 T^{4} - 1207662834 T^{6} + 394553263892 T^{8} - 1207662834 p^{4} T^{10} + 5729423 p^{8} T^{12} - 3974 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
53 \( ( 1 - 1490 T^{2} - 10972439 T^{4} + 3856750270 T^{6} + 94265737987060 T^{8} + 3856750270 p^{4} T^{10} - 10972439 p^{8} T^{12} - 1490 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
59 \( ( 1 - 12314 T^{2} + 89752607 T^{4} - 463588445838 T^{6} + 1845138985170644 T^{8} - 463588445838 p^{4} T^{10} + 89752607 p^{8} T^{12} - 12314 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
61 \( ( 1 - 46 T - 4073 T^{2} + 57638 T^{3} + 16584244 T^{4} + 57638 p^{2} T^{5} - 4073 p^{4} T^{6} - 46 p^{6} T^{7} + p^{8} T^{8} )^{4} \)
67 \( ( 1 + 7470 T^{2} + 28120055 T^{4} - 94281835590 T^{6} - 764289185451516 T^{8} - 94281835590 p^{4} T^{10} + 28120055 p^{8} T^{12} + 7470 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
71 \( ( 1 + 10426 T^{2} + 61231893 T^{4} + 10426 p^{4} T^{6} + p^{8} T^{8} )^{4} \)
73 \( ( 1 - 104 T^{2} - 56439098 T^{4} + 36043072 T^{6} + 2379825543338659 T^{8} + 36043072 p^{4} T^{10} - 56439098 p^{8} T^{12} - 104 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
79 \( ( 1 - 20 T - 9982 T^{2} + 42000 T^{3} + 66339443 T^{4} + 42000 p^{2} T^{5} - 9982 p^{4} T^{6} - 20 p^{6} T^{7} + p^{8} T^{8} )^{4} \)
83 \( ( 1 + 16552 T^{2} + 134515866 T^{4} + 16552 p^{4} T^{6} + p^{8} T^{8} )^{4} \)
89 \( ( 1 - 268 T^{2} - 60648182 T^{4} + 17356879568 T^{6} - 254176075779629 T^{8} + 17356879568 p^{4} T^{10} - 60648182 p^{8} T^{12} - 268 p^{12} T^{14} + p^{16} T^{16} )^{2} \)
97 \( ( 1 - 36348 T^{2} + 507335590 T^{4} - 36348 p^{4} T^{6} + p^{8} T^{8} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.02344362601210208119520393852, −2.99673902624545950700409348764, −2.96846380773337638461589843288, −2.93381652437885093446290023516, −2.69055752671978665171910562493, −2.52776880852218163536268424801, −2.51509650595855706194163173081, −2.42345411902072511851381860115, −2.25707380329880714943159680599, −2.21175625546058801077049749773, −2.20506550686710427432610259517, −2.08500795513678458203654541430, −1.90752719284588504260447447401, −1.85752459486927191815968695005, −1.84004976033896518960034342342, −1.75062133700175812823845361124, −1.72564292529057497248116329466, −1.30866934740735484702880723715, −0.854638644818097353664601628017, −0.814999746596776804421839893438, −0.59843072560089989222241211480, −0.51228019158960999593241621852, −0.42205917276074737879089976426, −0.13014537847348308825329840861, −0.01373643751722746179458149861, 0.01373643751722746179458149861, 0.13014537847348308825329840861, 0.42205917276074737879089976426, 0.51228019158960999593241621852, 0.59843072560089989222241211480, 0.814999746596776804421839893438, 0.854638644818097353664601628017, 1.30866934740735484702880723715, 1.72564292529057497248116329466, 1.75062133700175812823845361124, 1.84004976033896518960034342342, 1.85752459486927191815968695005, 1.90752719284588504260447447401, 2.08500795513678458203654541430, 2.20506550686710427432610259517, 2.21175625546058801077049749773, 2.25707380329880714943159680599, 2.42345411902072511851381860115, 2.51509650595855706194163173081, 2.52776880852218163536268424801, 2.69055752671978665171910562493, 2.93381652437885093446290023516, 2.96846380773337638461589843288, 2.99673902624545950700409348764, 3.02344362601210208119520393852

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.