Properties

Label 3-1-1.1-r0e3-m17.19m25.76p42.95-0
Degree $3$
Conductor $1$
Sign $1$
Analytic cond. $76.6510$
Root an. cond. $4.24788$
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (−0.0391 − 0.0382i)2-s + (−0.0739 + 0.614i)3-s + (0.0392 − 0.0352i)4-s + (1.17 + 0.193i)5-s + (0.0263 − 0.0212i)6-s + (1.17 + 0.323i)7-s + (0.994 − 0.000119i)8-s + (−0.298 + 0.523i)9-s + (−0.0387 − 0.0526i)10-s + (−0.722 + 0.423i)11-s + (0.0187 + 0.0267i)12-s + (−0.408 + 1.32i)13-s + (−0.0336 − 0.0576i)14-s + (−0.206 + 0.711i)15-s + (−0.0778 − 0.0790i)16-s + (0.381 + 0.316i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s-25.7i) \, \Gamma_{\R}(s-17.1i) \, \Gamma_{\R}(s+42.9i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(76.6510\)
Root analytic conductor: \(4.24788\)
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: \((3,\ 1,\ (-25.75536556i, -17.192718445i, 42.948084006i:\ ),\ 1)\)

Euler product

\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{3} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−24.869592, −23.820271, −22.413852, −20.983517, −20.094836, −18.198757, −17.683167, −16.459232, −14.549191, −13.637141, −12.601554, −10.976500, −9.954163, −8.237273, −7.349005, −5.733745, −4.879062, −2.846324, −1.526392, −0.812123, 1.543827, 2.291767, 4.549010, 5.430702, 7.568371, 9.583998, 11.000684, 13.971250, 21.496079

Graph of the $Z$-function along the critical line