Properties

Label 28-74e14-1.1-c5e14-0-1
Degree $28$
Conductor $1.477\times 10^{26}$
Sign $1$
Analytic cond. $1.10025\times 10^{15}$
Root an. cond. $3.44505$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14·3-s − 112·4-s − 312·7-s − 1.21e3·9-s + 262·11-s − 1.56e3·12-s + 7.16e3·16-s − 4.36e3·21-s + 2.50e4·25-s − 2.39e4·27-s + 3.49e4·28-s + 3.66e3·33-s + 1.36e5·36-s + 1.32e4·37-s + 5.17e3·41-s − 2.93e4·44-s + 3.69e4·47-s + 1.00e5·48-s − 4.39e4·49-s + 9.52e3·53-s + 3.79e5·63-s − 3.44e5·64-s − 5.51e4·67-s + 2.77e4·71-s + 6.57e4·73-s + 3.50e5·75-s − 8.17e4·77-s + ⋯
L(s)  = 1  + 0.898·3-s − 7/2·4-s − 2.40·7-s − 5.00·9-s + 0.652·11-s − 3.14·12-s + 7·16-s − 2.16·21-s + 8.00·25-s − 6.32·27-s + 8.42·28-s + 0.586·33-s + 17.5·36-s + 1.59·37-s + 0.481·41-s − 2.28·44-s + 2.44·47-s + 6.28·48-s − 2.61·49-s + 0.465·53-s + 12.0·63-s − 10.5·64-s − 1.50·67-s + 0.653·71-s + 1.44·73-s + 7.18·75-s − 1.57·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{14} \cdot 37^{14}\right)^{s/2} \, \Gamma_{\C}(s)^{14} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{14} \cdot 37^{14}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{14} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(28\)
Conductor: \(2^{14} \cdot 37^{14}\)
Sign: $1$
Analytic conductor: \(1.10025\times 10^{15}\)
Root analytic conductor: \(3.44505\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((28,\ 2^{14} \cdot 37^{14} ,\ ( \ : [5/2]^{14} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(1.280801125\)
\(L(\frac12)\) \(\approx\) \(1.280801125\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{4} T^{2} )^{7} \)
37 \( 1 - 13286 T + 89471 p T^{2} + 1019000828 p^{2} T^{3} - 269723149815 p^{3} T^{4} + 419225773662 p^{5} T^{5} + 6635688599875 p^{7} T^{6} - 69037006446872 p^{9} T^{7} + 6635688599875 p^{12} T^{8} + 419225773662 p^{15} T^{9} - 269723149815 p^{18} T^{10} + 1019000828 p^{22} T^{11} + 89471 p^{26} T^{12} - 13286 p^{30} T^{13} + p^{35} T^{14} \)
good3 \( ( 1 - 7 T + 682 T^{2} - 1660 T^{3} + 267451 T^{4} + 107192 T^{5} + 24316951 p T^{6} + 18806066 p^{2} T^{7} + 24316951 p^{6} T^{8} + 107192 p^{10} T^{9} + 267451 p^{15} T^{10} - 1660 p^{20} T^{11} + 682 p^{25} T^{12} - 7 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
5 \( 1 - 5003 p T^{2} + 315634264 T^{4} - 528698476352 p T^{6} + 3287745450302522 p T^{8} - 80779845666855298849 T^{10} + \)\(65\!\cdots\!53\)\( p T^{12} - \)\(11\!\cdots\!36\)\( T^{14} + \)\(65\!\cdots\!53\)\( p^{11} T^{16} - 80779845666855298849 p^{20} T^{18} + 3287745450302522 p^{31} T^{20} - 528698476352 p^{41} T^{22} + 315634264 p^{50} T^{24} - 5003 p^{61} T^{26} + p^{70} T^{28} \)
7 \( ( 1 + 156 T + 58475 T^{2} + 10448856 T^{3} + 290500412 p T^{4} + 329158839848 T^{5} + 48814413503906 T^{6} + 6727309849441000 T^{7} + 48814413503906 p^{5} T^{8} + 329158839848 p^{10} T^{9} + 290500412 p^{16} T^{10} + 10448856 p^{20} T^{11} + 58475 p^{25} T^{12} + 156 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
11 \( ( 1 - 131 T + 677236 T^{2} - 141640908 T^{3} + 227283594221 T^{4} - 57409991230728 T^{5} + 4550616830594277 p T^{6} - 12354949387287810566 T^{7} + 4550616830594277 p^{6} T^{8} - 57409991230728 p^{10} T^{9} + 227283594221 p^{15} T^{10} - 141640908 p^{20} T^{11} + 677236 p^{25} T^{12} - 131 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
13 \( 1 - 2591143 T^{2} + 2975978435048 T^{4} - 2033148978338586544 T^{6} + \)\(74\!\cdots\!46\)\( p T^{8} - \)\(38\!\cdots\!33\)\( T^{10} + \)\(14\!\cdots\!61\)\( T^{12} - \)\(55\!\cdots\!00\)\( T^{14} + \)\(14\!\cdots\!61\)\( p^{10} T^{16} - \)\(38\!\cdots\!33\)\( p^{20} T^{18} + \)\(74\!\cdots\!46\)\( p^{31} T^{20} - 2033148978338586544 p^{40} T^{22} + 2975978435048 p^{50} T^{24} - 2591143 p^{60} T^{26} + p^{70} T^{28} \)
17 \( 1 - 14877010 T^{2} + 6317017886251 p T^{4} - \)\(49\!\cdots\!12\)\( T^{6} + \)\(16\!\cdots\!33\)\( T^{8} - \)\(24\!\cdots\!50\)\( p T^{10} + \)\(84\!\cdots\!71\)\( T^{12} - \)\(13\!\cdots\!36\)\( T^{14} + \)\(84\!\cdots\!71\)\( p^{10} T^{16} - \)\(24\!\cdots\!50\)\( p^{21} T^{18} + \)\(16\!\cdots\!33\)\( p^{30} T^{20} - \)\(49\!\cdots\!12\)\( p^{40} T^{22} + 6317017886251 p^{51} T^{24} - 14877010 p^{60} T^{26} + p^{70} T^{28} \)
19 \( 1 - 26374282 T^{2} + 334775213456147 T^{4} - \)\(27\!\cdots\!24\)\( T^{6} + \)\(15\!\cdots\!89\)\( T^{8} - \)\(69\!\cdots\!46\)\( T^{10} + \)\(24\!\cdots\!87\)\( T^{12} - \)\(67\!\cdots\!24\)\( T^{14} + \)\(24\!\cdots\!87\)\( p^{10} T^{16} - \)\(69\!\cdots\!46\)\( p^{20} T^{18} + \)\(15\!\cdots\!89\)\( p^{30} T^{20} - \)\(27\!\cdots\!24\)\( p^{40} T^{22} + 334775213456147 p^{50} T^{24} - 26374282 p^{60} T^{26} + p^{70} T^{28} \)
23 \( 1 - 1284417 p T^{2} + 531385800239636 T^{4} - \)\(71\!\cdots\!00\)\( T^{6} + \)\(77\!\cdots\!46\)\( T^{8} - \)\(71\!\cdots\!97\)\( T^{10} + \)\(56\!\cdots\!05\)\( T^{12} - \)\(39\!\cdots\!24\)\( T^{14} + \)\(56\!\cdots\!05\)\( p^{10} T^{16} - \)\(71\!\cdots\!97\)\( p^{20} T^{18} + \)\(77\!\cdots\!46\)\( p^{30} T^{20} - \)\(71\!\cdots\!00\)\( p^{40} T^{22} + 531385800239636 p^{50} T^{24} - 1284417 p^{61} T^{26} + p^{70} T^{28} \)
29 \( 1 - 166645463 T^{2} + 14384149595503208 T^{4} - \)\(83\!\cdots\!56\)\( T^{6} + \)\(36\!\cdots\!54\)\( T^{8} - \)\(12\!\cdots\!25\)\( T^{10} + \)\(33\!\cdots\!37\)\( T^{12} - \)\(75\!\cdots\!12\)\( T^{14} + \)\(33\!\cdots\!37\)\( p^{10} T^{16} - \)\(12\!\cdots\!25\)\( p^{20} T^{18} + \)\(36\!\cdots\!54\)\( p^{30} T^{20} - \)\(83\!\cdots\!56\)\( p^{40} T^{22} + 14384149595503208 p^{50} T^{24} - 166645463 p^{60} T^{26} + p^{70} T^{28} \)
31 \( 1 - 267975923 T^{2} + 35960686619169652 T^{4} - \)\(31\!\cdots\!36\)\( T^{6} + \)\(20\!\cdots\!42\)\( T^{8} - \)\(10\!\cdots\!01\)\( T^{10} + \)\(40\!\cdots\!85\)\( T^{12} - \)\(12\!\cdots\!40\)\( T^{14} + \)\(40\!\cdots\!85\)\( p^{10} T^{16} - \)\(10\!\cdots\!01\)\( p^{20} T^{18} + \)\(20\!\cdots\!42\)\( p^{30} T^{20} - \)\(31\!\cdots\!36\)\( p^{40} T^{22} + 35960686619169652 p^{50} T^{24} - 267975923 p^{60} T^{26} + p^{70} T^{28} \)
41 \( ( 1 - 2589 T + 5038570 p T^{2} + 995114251822 T^{3} + 45209334084411447 T^{4} + 91361243747170725404 T^{5} + \)\(62\!\cdots\!27\)\( T^{6} + \)\(31\!\cdots\!96\)\( T^{7} + \)\(62\!\cdots\!27\)\( p^{5} T^{8} + 91361243747170725404 p^{10} T^{9} + 45209334084411447 p^{15} T^{10} + 995114251822 p^{20} T^{11} + 5038570 p^{26} T^{12} - 2589 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
43 \( 1 - 1002502830 T^{2} + 543062949998784579 T^{4} - \)\(20\!\cdots\!96\)\( T^{6} + \)\(58\!\cdots\!21\)\( T^{8} - \)\(13\!\cdots\!66\)\( T^{10} + \)\(25\!\cdots\!35\)\( T^{12} - \)\(41\!\cdots\!16\)\( T^{14} + \)\(25\!\cdots\!35\)\( p^{10} T^{16} - \)\(13\!\cdots\!66\)\( p^{20} T^{18} + \)\(58\!\cdots\!21\)\( p^{30} T^{20} - \)\(20\!\cdots\!96\)\( p^{40} T^{22} + 543062949998784579 p^{50} T^{24} - 1002502830 p^{60} T^{26} + p^{70} T^{28} \)
47 \( ( 1 - 18490 T + 781482403 T^{2} - 12926549866712 T^{3} + 336397525050954692 T^{4} - \)\(42\!\cdots\!80\)\( T^{5} + \)\(92\!\cdots\!38\)\( T^{6} - \)\(11\!\cdots\!16\)\( T^{7} + \)\(92\!\cdots\!38\)\( p^{5} T^{8} - \)\(42\!\cdots\!80\)\( p^{10} T^{9} + 336397525050954692 p^{15} T^{10} - 12926549866712 p^{20} T^{11} + 781482403 p^{25} T^{12} - 18490 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
53 \( ( 1 - 4760 T + 1143043049 T^{2} - 15031175619356 T^{3} + 829097320876747596 T^{4} - \)\(11\!\cdots\!48\)\( T^{5} + \)\(48\!\cdots\!42\)\( T^{6} - \)\(50\!\cdots\!08\)\( T^{7} + \)\(48\!\cdots\!42\)\( p^{5} T^{8} - \)\(11\!\cdots\!48\)\( p^{10} T^{9} + 829097320876747596 p^{15} T^{10} - 15031175619356 p^{20} T^{11} + 1143043049 p^{25} T^{12} - 4760 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
59 \( 1 - 5829127162 T^{2} + 16442038905549764483 T^{4} - \)\(30\!\cdots\!28\)\( T^{6} + \)\(41\!\cdots\!81\)\( T^{8} - \)\(45\!\cdots\!62\)\( T^{10} + \)\(41\!\cdots\!91\)\( T^{12} - \)\(31\!\cdots\!28\)\( T^{14} + \)\(41\!\cdots\!91\)\( p^{10} T^{16} - \)\(45\!\cdots\!62\)\( p^{20} T^{18} + \)\(41\!\cdots\!81\)\( p^{30} T^{20} - \)\(30\!\cdots\!28\)\( p^{40} T^{22} + 16442038905549764483 p^{50} T^{24} - 5829127162 p^{60} T^{26} + p^{70} T^{28} \)
61 \( 1 - 6774754047 T^{2} + 22898985107563975152 T^{4} - \)\(51\!\cdots\!68\)\( T^{6} + \)\(87\!\cdots\!94\)\( T^{8} - \)\(11\!\cdots\!61\)\( T^{10} + \)\(13\!\cdots\!73\)\( T^{12} - \)\(12\!\cdots\!88\)\( T^{14} + \)\(13\!\cdots\!73\)\( p^{10} T^{16} - \)\(11\!\cdots\!61\)\( p^{20} T^{18} + \)\(87\!\cdots\!94\)\( p^{30} T^{20} - \)\(51\!\cdots\!68\)\( p^{40} T^{22} + 22898985107563975152 p^{50} T^{24} - 6774754047 p^{60} T^{26} + p^{70} T^{28} \)
67 \( ( 1 + 27569 T + 5402726938 T^{2} + 144640052679966 T^{3} + 16211082020762155464 T^{4} + \)\(37\!\cdots\!99\)\( T^{5} + \)\(31\!\cdots\!07\)\( T^{6} + \)\(62\!\cdots\!28\)\( T^{7} + \)\(31\!\cdots\!07\)\( p^{5} T^{8} + \)\(37\!\cdots\!99\)\( p^{10} T^{9} + 16211082020762155464 p^{15} T^{10} + 144640052679966 p^{20} T^{11} + 5402726938 p^{25} T^{12} + 27569 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
71 \( ( 1 - 13880 T + 9454682355 T^{2} - 97130919360056 T^{3} + 41223493020268668844 T^{4} - \)\(44\!\cdots\!96\)\( p T^{5} + \)\(11\!\cdots\!70\)\( T^{6} - \)\(66\!\cdots\!36\)\( T^{7} + \)\(11\!\cdots\!70\)\( p^{5} T^{8} - \)\(44\!\cdots\!96\)\( p^{11} T^{9} + 41223493020268668844 p^{15} T^{10} - 97130919360056 p^{20} T^{11} + 9454682355 p^{25} T^{12} - 13880 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
73 \( ( 1 - 32891 T + 11141026514 T^{2} - 278490824940290 T^{3} + 56633295238936297223 T^{4} - \)\(11\!\cdots\!60\)\( T^{5} + \)\(17\!\cdots\!03\)\( T^{6} - \)\(28\!\cdots\!80\)\( T^{7} + \)\(17\!\cdots\!03\)\( p^{5} T^{8} - \)\(11\!\cdots\!60\)\( p^{10} T^{9} + 56633295238936297223 p^{15} T^{10} - 278490824940290 p^{20} T^{11} + 11141026514 p^{25} T^{12} - 32891 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
79 \( 1 - 8935558655 T^{2} + 78491154884316596620 T^{4} - \)\(45\!\cdots\!32\)\( T^{6} + \)\(24\!\cdots\!06\)\( T^{8} - \)\(10\!\cdots\!93\)\( T^{10} + \)\(38\!\cdots\!33\)\( T^{12} - \)\(12\!\cdots\!20\)\( T^{14} + \)\(38\!\cdots\!33\)\( p^{10} T^{16} - \)\(10\!\cdots\!93\)\( p^{20} T^{18} + \)\(24\!\cdots\!06\)\( p^{30} T^{20} - \)\(45\!\cdots\!32\)\( p^{40} T^{22} + 78491154884316596620 p^{50} T^{24} - 8935558655 p^{60} T^{26} + p^{70} T^{28} \)
83 \( ( 1 - 89408 T + 22692602067 T^{2} - 1750951627662320 T^{3} + \)\(24\!\cdots\!12\)\( T^{4} - \)\(15\!\cdots\!68\)\( T^{5} + \)\(15\!\cdots\!66\)\( T^{6} - \)\(77\!\cdots\!16\)\( T^{7} + \)\(15\!\cdots\!66\)\( p^{5} T^{8} - \)\(15\!\cdots\!68\)\( p^{10} T^{9} + \)\(24\!\cdots\!12\)\( p^{15} T^{10} - 1750951627662320 p^{20} T^{11} + 22692602067 p^{25} T^{12} - 89408 p^{30} T^{13} + p^{35} T^{14} )^{2} \)
89 \( 1 - 16970815606 T^{2} + \)\(18\!\cdots\!59\)\( T^{4} - \)\(17\!\cdots\!00\)\( T^{6} + \)\(13\!\cdots\!93\)\( T^{8} - \)\(10\!\cdots\!54\)\( T^{10} + \)\(66\!\cdots\!71\)\( T^{12} - \)\(38\!\cdots\!28\)\( T^{14} + \)\(66\!\cdots\!71\)\( p^{10} T^{16} - \)\(10\!\cdots\!54\)\( p^{20} T^{18} + \)\(13\!\cdots\!93\)\( p^{30} T^{20} - \)\(17\!\cdots\!00\)\( p^{40} T^{22} + \)\(18\!\cdots\!59\)\( p^{50} T^{24} - 16970815606 p^{60} T^{26} + p^{70} T^{28} \)
97 \( 1 - 69104852194 T^{2} + \)\(25\!\cdots\!55\)\( T^{4} - \)\(61\!\cdots\!36\)\( T^{6} + \)\(11\!\cdots\!33\)\( T^{8} - \)\(16\!\cdots\!62\)\( T^{10} + \)\(18\!\cdots\!03\)\( T^{12} - \)\(17\!\cdots\!76\)\( T^{14} + \)\(18\!\cdots\!03\)\( p^{10} T^{16} - \)\(16\!\cdots\!62\)\( p^{20} T^{18} + \)\(11\!\cdots\!33\)\( p^{30} T^{20} - \)\(61\!\cdots\!36\)\( p^{40} T^{22} + \)\(25\!\cdots\!55\)\( p^{50} T^{24} - 69104852194 p^{60} T^{26} + p^{70} T^{28} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{28} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.66017184947855287782315377250, −3.55984704874271522640875638059, −3.36088643998451048491284834297, −3.28272973058366769176384027954, −3.12149530042241503604731268194, −3.07289300561508334296803405137, −2.97038389580453024358400496991, −2.94253867829644199704502512268, −2.84113855163506261203655910413, −2.69383947575536388786363280139, −2.68329402153793475348969444217, −2.41577380123181826896803661841, −2.35792150930712213245092769186, −2.05141094246881212904902874311, −1.72222664149376088526848960030, −1.42900084793544598624512149956, −1.37281323911000312399031656055, −1.29078793737017239405086539845, −0.892959167174251741465231483453, −0.74315725196364482808494821030, −0.68948875359544126853068770805, −0.52167034733356770914519754726, −0.39424802993740217019554598953, −0.27311304701170001477374862875, −0.18283295186490108220956385261, 0.18283295186490108220956385261, 0.27311304701170001477374862875, 0.39424802993740217019554598953, 0.52167034733356770914519754726, 0.68948875359544126853068770805, 0.74315725196364482808494821030, 0.892959167174251741465231483453, 1.29078793737017239405086539845, 1.37281323911000312399031656055, 1.42900084793544598624512149956, 1.72222664149376088526848960030, 2.05141094246881212904902874311, 2.35792150930712213245092769186, 2.41577380123181826896803661841, 2.68329402153793475348969444217, 2.69383947575536388786363280139, 2.84113855163506261203655910413, 2.94253867829644199704502512268, 2.97038389580453024358400496991, 3.07289300561508334296803405137, 3.12149530042241503604731268194, 3.28272973058366769176384027954, 3.36088643998451048491284834297, 3.55984704874271522640875638059, 3.66017184947855287782315377250

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.