Properties

Label 28-1840e14-1.1-c1e14-0-0
Degree $28$
Conductor $5.099\times 10^{45}$
Sign $1$
Analytic cond. $2.18438\times 10^{16}$
Root an. cond. $3.83307$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 19·9-s + 14·11-s − 14·19-s − 5·25-s + 22·29-s + 20·31-s − 32·41-s + 38·45-s + 66·49-s + 28·55-s − 22·59-s + 10·61-s + 28·71-s − 64·79-s + 175·81-s + 48·89-s − 28·95-s + 266·99-s − 58·101-s + 54·109-s + 47·121-s − 24·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  + 0.894·5-s + 19/3·9-s + 4.22·11-s − 3.21·19-s − 25-s + 4.08·29-s + 3.59·31-s − 4.99·41-s + 5.66·45-s + 66/7·49-s + 3.77·55-s − 2.86·59-s + 1.28·61-s + 3.32·71-s − 7.20·79-s + 19.4·81-s + 5.08·89-s − 2.87·95-s + 26.7·99-s − 5.77·101-s + 5.17·109-s + 4.27·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{56} \cdot 5^{14} \cdot 23^{14}\right)^{s/2} \, \Gamma_{\C}(s)^{14} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{56} \cdot 5^{14} \cdot 23^{14}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{14} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(28\)
Conductor: \(2^{56} \cdot 5^{14} \cdot 23^{14}\)
Sign: $1$
Analytic conductor: \(2.18438\times 10^{16}\)
Root analytic conductor: \(3.83307\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1840} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((28,\ 2^{56} \cdot 5^{14} \cdot 23^{14} ,\ ( \ : [1/2]^{14} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(190.6705587\)
\(L(\frac12)\) \(\approx\) \(190.6705587\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 2 T + 9 T^{2} - 4 T^{3} + 7 T^{4} + 2 T^{5} + 127 T^{6} - 344 T^{7} + 127 p T^{8} + 2 p^{2} T^{9} + 7 p^{3} T^{10} - 4 p^{4} T^{11} + 9 p^{5} T^{12} - 2 p^{6} T^{13} + p^{7} T^{14} \)
23 \( ( 1 + T^{2} )^{7} \)
good3 \( 1 - 19 T^{2} + 62 p T^{4} - 1250 T^{6} + 2161 p T^{8} - 9244 p T^{10} + 101651 T^{12} - 325376 T^{14} + 101651 p^{2} T^{16} - 9244 p^{5} T^{18} + 2161 p^{7} T^{20} - 1250 p^{8} T^{22} + 62 p^{11} T^{24} - 19 p^{12} T^{26} + p^{14} T^{28} \)
7 \( 1 - 66 T^{2} + 2183 T^{4} - 47459 T^{6} + 753577 T^{8} - 9213346 T^{10} + 89256767 T^{12} - 695230850 T^{14} + 89256767 p^{2} T^{16} - 9213346 p^{4} T^{18} + 753577 p^{6} T^{20} - 47459 p^{8} T^{22} + 2183 p^{10} T^{24} - 66 p^{12} T^{26} + p^{14} T^{28} \)
11 \( ( 1 - 7 T + 50 T^{2} - 24 p T^{3} + 1304 T^{4} - 5217 T^{5} + 20319 T^{6} - 69648 T^{7} + 20319 p T^{8} - 5217 p^{2} T^{9} + 1304 p^{3} T^{10} - 24 p^{5} T^{11} + 50 p^{5} T^{12} - 7 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
13 \( 1 - 107 T^{2} + 5394 T^{4} - 172078 T^{6} + 305247 p T^{8} - 72258180 T^{10} + 1112944891 T^{12} - 15218250732 T^{14} + 1112944891 p^{2} T^{16} - 72258180 p^{4} T^{18} + 305247 p^{7} T^{20} - 172078 p^{8} T^{22} + 5394 p^{10} T^{24} - 107 p^{12} T^{26} + p^{14} T^{28} \)
17 \( 1 - 122 T^{2} + 7003 T^{4} - 248683 T^{6} + 6055449 T^{8} - 107644814 T^{10} + 1549072811 T^{12} - 23227734218 T^{14} + 1549072811 p^{2} T^{16} - 107644814 p^{4} T^{18} + 6055449 p^{6} T^{20} - 248683 p^{8} T^{22} + 7003 p^{10} T^{24} - 122 p^{12} T^{26} + p^{14} T^{28} \)
19 \( ( 1 + 7 T + 80 T^{2} + 560 T^{3} + 3576 T^{4} + 20921 T^{5} + 103617 T^{6} + 488640 T^{7} + 103617 p T^{8} + 20921 p^{2} T^{9} + 3576 p^{3} T^{10} + 560 p^{4} T^{11} + 80 p^{5} T^{12} + 7 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
29 \( ( 1 - 11 T + 147 T^{2} - 984 T^{3} + 8570 T^{4} - 46128 T^{5} + 336468 T^{6} - 1566138 T^{7} + 336468 p T^{8} - 46128 p^{2} T^{9} + 8570 p^{3} T^{10} - 984 p^{4} T^{11} + 147 p^{5} T^{12} - 11 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
31 \( ( 1 - 10 T + 107 T^{2} - 617 T^{3} + 5296 T^{4} - 28550 T^{5} + 208730 T^{6} - 954795 T^{7} + 208730 p T^{8} - 28550 p^{2} T^{9} + 5296 p^{3} T^{10} - 617 p^{4} T^{11} + 107 p^{5} T^{12} - 10 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
37 \( 1 - 293 T^{2} + 44239 T^{4} - 4504978 T^{6} + 343871477 T^{8} - 20751361259 T^{10} + 1019473928875 T^{12} - 41393907437468 T^{14} + 1019473928875 p^{2} T^{16} - 20751361259 p^{4} T^{18} + 343871477 p^{6} T^{20} - 4504978 p^{8} T^{22} + 44239 p^{10} T^{24} - 293 p^{12} T^{26} + p^{14} T^{28} \)
41 \( ( 1 + 16 T + 299 T^{2} + 2981 T^{3} + 33474 T^{4} + 254854 T^{5} + 2163504 T^{6} + 13191531 T^{7} + 2163504 p T^{8} + 254854 p^{2} T^{9} + 33474 p^{3} T^{10} + 2981 p^{4} T^{11} + 299 p^{5} T^{12} + 16 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
43 \( 1 - 506 T^{2} + 120767 T^{4} - 18086140 T^{6} + 1906966741 T^{8} - 150435650374 T^{10} + 9194894688539 T^{12} - 443672445532488 T^{14} + 9194894688539 p^{2} T^{16} - 150435650374 p^{4} T^{18} + 1906966741 p^{6} T^{20} - 18086140 p^{8} T^{22} + 120767 p^{10} T^{24} - 506 p^{12} T^{26} + p^{14} T^{28} \)
47 \( 1 - 266 T^{2} + 38569 T^{4} - 4017312 T^{6} + 329764176 T^{8} - 22494973712 T^{10} + 1310292484982 T^{12} - 66022395493804 T^{14} + 1310292484982 p^{2} T^{16} - 22494973712 p^{4} T^{18} + 329764176 p^{6} T^{20} - 4017312 p^{8} T^{22} + 38569 p^{10} T^{24} - 266 p^{12} T^{26} + p^{14} T^{28} \)
53 \( 1 - 397 T^{2} + 82271 T^{4} - 11591450 T^{6} + 1231873957 T^{8} - 104206151155 T^{10} + 7233652549035 T^{12} - 418745375631148 T^{14} + 7233652549035 p^{2} T^{16} - 104206151155 p^{4} T^{18} + 1231873957 p^{6} T^{20} - 11591450 p^{8} T^{22} + 82271 p^{10} T^{24} - 397 p^{12} T^{26} + p^{14} T^{28} \)
59 \( ( 1 + 11 T + 161 T^{2} + 1606 T^{3} + 15241 T^{4} + 104989 T^{5} + 902577 T^{6} + 6212660 T^{7} + 902577 p T^{8} + 104989 p^{2} T^{9} + 15241 p^{3} T^{10} + 1606 p^{4} T^{11} + 161 p^{5} T^{12} + 11 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
61 \( ( 1 - 5 T + 112 T^{2} + 218 T^{3} + 7820 T^{4} + 11169 T^{5} + 779059 T^{6} + 139788 T^{7} + 779059 p T^{8} + 11169 p^{2} T^{9} + 7820 p^{3} T^{10} + 218 p^{4} T^{11} + 112 p^{5} T^{12} - 5 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
67 \( 1 - 369 T^{2} + 65479 T^{4} - 7261706 T^{6} + 565267357 T^{8} - 34299289407 T^{10} + 1895368357035 T^{12} - 115358926660780 T^{14} + 1895368357035 p^{2} T^{16} - 34299289407 p^{4} T^{18} + 565267357 p^{6} T^{20} - 7261706 p^{8} T^{22} + 65479 p^{10} T^{24} - 369 p^{12} T^{26} + p^{14} T^{28} \)
71 \( ( 1 - 14 T + 341 T^{2} - 3253 T^{3} + 50270 T^{4} - 415786 T^{5} + 5172636 T^{6} - 36898691 T^{7} + 5172636 p T^{8} - 415786 p^{2} T^{9} + 50270 p^{3} T^{10} - 3253 p^{4} T^{11} + 341 p^{5} T^{12} - 14 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
73 \( 1 - 862 T^{2} + 354217 T^{4} - 91970752 T^{6} + 16854894880 T^{8} - 2306015009424 T^{10} + 242867435234150 T^{12} - 20001032688147428 T^{14} + 242867435234150 p^{2} T^{16} - 2306015009424 p^{4} T^{18} + 16854894880 p^{6} T^{20} - 91970752 p^{8} T^{22} + 354217 p^{10} T^{24} - 862 p^{12} T^{26} + p^{14} T^{28} \)
79 \( ( 1 + 32 T + 719 T^{2} + 12292 T^{3} + 173907 T^{4} + 2116176 T^{5} + 22653621 T^{6} + 212954872 T^{7} + 22653621 p T^{8} + 2116176 p^{2} T^{9} + 173907 p^{3} T^{10} + 12292 p^{4} T^{11} + 719 p^{5} T^{12} + 32 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
83 \( 1 - 717 T^{2} + 246543 T^{4} - 54114654 T^{6} + 8558105653 T^{8} - 1052493882963 T^{10} + 107035491394123 T^{12} - 9444801982758308 T^{14} + 107035491394123 p^{2} T^{16} - 1052493882963 p^{4} T^{18} + 8558105653 p^{6} T^{20} - 54114654 p^{8} T^{22} + 246543 p^{10} T^{24} - 717 p^{12} T^{26} + p^{14} T^{28} \)
89 \( ( 1 - 24 T + 669 T^{2} - 10556 T^{3} + 175975 T^{4} - 2095656 T^{5} + 25712747 T^{6} - 239948584 T^{7} + 25712747 p T^{8} - 2095656 p^{2} T^{9} + 175975 p^{3} T^{10} - 10556 p^{4} T^{11} + 669 p^{5} T^{12} - 24 p^{6} T^{13} + p^{7} T^{14} )^{2} \)
97 \( 1 - 571 T^{2} + 181248 T^{4} - 40462120 T^{6} + 7078397138 T^{8} - 1020702744285 T^{10} + 124694580796541 T^{12} - 13046430227502176 T^{14} + 124694580796541 p^{2} T^{16} - 1020702744285 p^{4} T^{18} + 7078397138 p^{6} T^{20} - 40462120 p^{8} T^{22} + 181248 p^{10} T^{24} - 571 p^{12} T^{26} + p^{14} T^{28} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{28} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.61078090241907958418957985112, −2.54472415112629570515935724888, −2.31372077556602765889268833238, −2.16656295679753781805609161575, −2.15837395442535619269949189105, −2.05696802685984572610530490511, −1.91321283659269739923842395608, −1.87801128986824782543354927746, −1.87329077680714895846456021922, −1.68947733212085388026553443830, −1.68726517466984282971835180240, −1.61313879119983150664295349983, −1.56732596191691130658639781153, −1.55928326413005026797748177561, −1.49131794945646159828252517923, −1.18036471951747857334829110815, −1.03639338196945115734507379872, −0.979921711663664490485275325013, −0.976671932290797102505285524924, −0.957199736531995539253762338435, −0.847875693579928602973065173965, −0.74721543601711695574083415855, −0.58066761152066023840967642971, −0.45735994679497252389361585157, −0.18855380373389922085233442517, 0.18855380373389922085233442517, 0.45735994679497252389361585157, 0.58066761152066023840967642971, 0.74721543601711695574083415855, 0.847875693579928602973065173965, 0.957199736531995539253762338435, 0.976671932290797102505285524924, 0.979921711663664490485275325013, 1.03639338196945115734507379872, 1.18036471951747857334829110815, 1.49131794945646159828252517923, 1.55928326413005026797748177561, 1.56732596191691130658639781153, 1.61313879119983150664295349983, 1.68726517466984282971835180240, 1.68947733212085388026553443830, 1.87329077680714895846456021922, 1.87801128986824782543354927746, 1.91321283659269739923842395608, 2.05696802685984572610530490511, 2.15837395442535619269949189105, 2.16656295679753781805609161575, 2.31372077556602765889268833238, 2.54472415112629570515935724888, 2.61078090241907958418957985112

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.