Properties

Label 24-40e24-1.1-c1e12-0-1
Degree $24$
Conductor $2.815\times 10^{38}$
Sign $1$
Analytic cond. $1.89132\times 10^{13}$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·9-s + 2·11-s − 4·13-s − 8·17-s + 14·19-s + 4·31-s − 4·33-s + 8·37-s + 8·39-s − 8·47-s + 44·49-s + 16·51-s − 16·53-s − 28·57-s − 20·59-s + 4·61-s − 50·67-s − 12·79-s − 81-s + 2·83-s − 8·93-s + 4·99-s + 16·101-s + 46·107-s − 40·109-s − 16·111-s + ⋯
L(s)  = 1  − 1.15·3-s + 2/3·9-s + 0.603·11-s − 1.10·13-s − 1.94·17-s + 3.21·19-s + 0.718·31-s − 0.696·33-s + 1.31·37-s + 1.28·39-s − 1.16·47-s + 44/7·49-s + 2.24·51-s − 2.19·53-s − 3.70·57-s − 2.60·59-s + 0.512·61-s − 6.10·67-s − 1.35·79-s − 1/9·81-s + 0.219·83-s − 0.829·93-s + 0.402·99-s + 1.59·101-s + 4.44·107-s − 3.83·109-s − 1.51·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{72} \cdot 5^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{72} \cdot 5^{24}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(2^{72} \cdot 5^{24}\)
Sign: $1$
Analytic conductor: \(1.89132\times 10^{13}\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1600} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 2^{72} \cdot 5^{24} ,\ ( \ : [1/2]^{12} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.240681584\)
\(L(\frac12)\) \(\approx\) \(1.240681584\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 2 T + 2 T^{2} - p T^{4} - 4 p T^{5} - 2 p^{2} T^{6} - 74 T^{7} - 10 p^{2} T^{8} - 2 p^{2} T^{9} + 2 p^{4} T^{10} + 28 p^{2} T^{11} + 937 T^{12} + 28 p^{3} T^{13} + 2 p^{6} T^{14} - 2 p^{5} T^{15} - 10 p^{6} T^{16} - 74 p^{5} T^{17} - 2 p^{8} T^{18} - 4 p^{8} T^{19} - p^{9} T^{20} + 2 p^{10} T^{22} + 2 p^{11} T^{23} + p^{12} T^{24} \)
7 \( 1 - 44 T^{2} + 918 T^{4} - 12220 T^{6} + 119871 T^{8} - 967000 T^{10} + 7009300 T^{12} - 967000 p^{2} T^{14} + 119871 p^{4} T^{16} - 12220 p^{6} T^{18} + 918 p^{8} T^{20} - 44 p^{10} T^{22} + p^{12} T^{24} \)
11 \( 1 - 2 T + 2 T^{2} + 72 T^{3} - 283 T^{4} - 52 p T^{5} + 4302 T^{6} - 19126 T^{7} - 29610 T^{8} + 266114 T^{9} - 469022 T^{10} - 1099492 T^{11} + 13555393 T^{12} - 1099492 p T^{13} - 469022 p^{2} T^{14} + 266114 p^{3} T^{15} - 29610 p^{4} T^{16} - 19126 p^{5} T^{17} + 4302 p^{6} T^{18} - 52 p^{8} T^{19} - 283 p^{8} T^{20} + 72 p^{9} T^{21} + 2 p^{10} T^{22} - 2 p^{11} T^{23} + p^{12} T^{24} \)
13 \( 1 + 4 T + 8 T^{2} - 60 T^{3} + 46 T^{4} + 1540 T^{5} + 584 p T^{6} - 1052 T^{7} - 20945 T^{8} + 10312 p T^{9} + 9488 p^{2} T^{10} + 119240 p T^{11} + 1108324 T^{12} + 119240 p^{2} T^{13} + 9488 p^{4} T^{14} + 10312 p^{4} T^{15} - 20945 p^{4} T^{16} - 1052 p^{5} T^{17} + 584 p^{7} T^{18} + 1540 p^{7} T^{19} + 46 p^{8} T^{20} - 60 p^{9} T^{21} + 8 p^{10} T^{22} + 4 p^{11} T^{23} + p^{12} T^{24} \)
17 \( ( 1 + 4 T + 53 T^{2} + 188 T^{3} + 1634 T^{4} + 5220 T^{5} + 33925 T^{6} + 5220 p T^{7} + 1634 p^{2} T^{8} + 188 p^{3} T^{9} + 53 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
19 \( 1 - 14 T + 98 T^{2} - 520 T^{3} + 2181 T^{4} - 4980 T^{5} - 8818 T^{6} + 161206 T^{7} - 941002 T^{8} + 3498718 T^{9} - 8958718 T^{10} + 3269620 T^{11} + 76280161 T^{12} + 3269620 p T^{13} - 8958718 p^{2} T^{14} + 3498718 p^{3} T^{15} - 941002 p^{4} T^{16} + 161206 p^{5} T^{17} - 8818 p^{6} T^{18} - 4980 p^{7} T^{19} + 2181 p^{8} T^{20} - 520 p^{9} T^{21} + 98 p^{10} T^{22} - 14 p^{11} T^{23} + p^{12} T^{24} \)
23 \( 1 - 4 p T^{2} + 194 p T^{4} - 176140 T^{6} + 6115855 T^{8} - 173125400 T^{10} + 4178547204 T^{12} - 173125400 p^{2} T^{14} + 6115855 p^{4} T^{16} - 176140 p^{6} T^{18} + 194 p^{9} T^{20} - 4 p^{11} T^{22} + p^{12} T^{24} \)
29 \( 1 - 32 T^{3} - 914 T^{4} + 576 T^{5} + 512 T^{6} + 1120 p T^{7} + 1670127 T^{8} - 363616 T^{9} - 405504 T^{10} - 17708576 T^{11} - 898620444 T^{12} - 17708576 p T^{13} - 405504 p^{2} T^{14} - 363616 p^{3} T^{15} + 1670127 p^{4} T^{16} + 1120 p^{6} T^{17} + 512 p^{6} T^{18} + 576 p^{7} T^{19} - 914 p^{8} T^{20} - 32 p^{9} T^{21} + p^{12} T^{24} \)
31 \( ( 1 - 2 T + 104 T^{2} - 2 p T^{3} + 5347 T^{4} + 156 T^{5} + 193360 T^{6} + 156 p T^{7} + 5347 p^{2} T^{8} - 2 p^{4} T^{9} + 104 p^{4} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
37 \( 1 - 8 T + 32 T^{2} + 216 T^{3} - 1454 T^{4} - 9736 T^{5} + 147744 T^{6} - 667944 T^{7} - 104049 T^{8} + 9992272 T^{9} + 41330112 T^{10} - 644241520 T^{11} + 6131713436 T^{12} - 644241520 p T^{13} + 41330112 p^{2} T^{14} + 9992272 p^{3} T^{15} - 104049 p^{4} T^{16} - 667944 p^{5} T^{17} + 147744 p^{6} T^{18} - 9736 p^{7} T^{19} - 1454 p^{8} T^{20} + 216 p^{9} T^{21} + 32 p^{10} T^{22} - 8 p^{11} T^{23} + p^{12} T^{24} \)
41 \( 1 - 230 T^{2} + 28213 T^{4} - 2424754 T^{6} + 161424378 T^{8} - 8712385310 T^{10} + 390373428269 T^{12} - 8712385310 p^{2} T^{14} + 161424378 p^{4} T^{16} - 2424754 p^{6} T^{18} + 28213 p^{8} T^{20} - 230 p^{10} T^{22} + p^{12} T^{24} \)
43 \( 1 - 128 T^{3} - 718 T^{4} + 12672 T^{5} + 8192 T^{6} + 789248 T^{7} - 4747697 T^{8} - 34261248 T^{9} - 14852096 T^{10} - 523527168 T^{11} + 11610577628 T^{12} - 523527168 p T^{13} - 14852096 p^{2} T^{14} - 34261248 p^{3} T^{15} - 4747697 p^{4} T^{16} + 789248 p^{5} T^{17} + 8192 p^{6} T^{18} + 12672 p^{7} T^{19} - 718 p^{8} T^{20} - 128 p^{9} T^{21} + p^{12} T^{24} \)
47 \( ( 1 + 4 T + 146 T^{2} + 468 T^{3} + 11635 T^{4} + 31600 T^{5} + 634292 T^{6} + 31600 p T^{7} + 11635 p^{2} T^{8} + 468 p^{3} T^{9} + 146 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
53 \( 1 + 16 T + 128 T^{2} + 1200 T^{3} + 5210 T^{4} - 30160 T^{5} - 429440 T^{6} - 5512176 T^{7} - 42537697 T^{8} - 34310496 T^{9} + 973441280 T^{10} + 17458522336 T^{11} + 202410048492 T^{12} + 17458522336 p T^{13} + 973441280 p^{2} T^{14} - 34310496 p^{3} T^{15} - 42537697 p^{4} T^{16} - 5512176 p^{5} T^{17} - 429440 p^{6} T^{18} - 30160 p^{7} T^{19} + 5210 p^{8} T^{20} + 1200 p^{9} T^{21} + 128 p^{10} T^{22} + 16 p^{11} T^{23} + p^{12} T^{24} \)
59 \( 1 + 20 T + 200 T^{2} + 1892 T^{3} + 6866 T^{4} - 82788 T^{5} - 1239128 T^{6} - 13899380 T^{7} - 98937457 T^{8} - 169449240 T^{9} + 2035658960 T^{10} + 40572655368 T^{11} + 458024033436 T^{12} + 40572655368 p T^{13} + 2035658960 p^{2} T^{14} - 169449240 p^{3} T^{15} - 98937457 p^{4} T^{16} - 13899380 p^{5} T^{17} - 1239128 p^{6} T^{18} - 82788 p^{7} T^{19} + 6866 p^{8} T^{20} + 1892 p^{9} T^{21} + 200 p^{10} T^{22} + 20 p^{11} T^{23} + p^{12} T^{24} \)
61 \( 1 - 4 T + 8 T^{2} - 172 T^{3} + 5938 T^{4} - 17388 T^{5} + 36840 T^{6} - 733732 T^{7} - 89637 p T^{8} + 50846808 T^{9} - 101027120 T^{10} + 3426409992 T^{11} - 107884090788 T^{12} + 3426409992 p T^{13} - 101027120 p^{2} T^{14} + 50846808 p^{3} T^{15} - 89637 p^{5} T^{16} - 733732 p^{5} T^{17} + 36840 p^{6} T^{18} - 17388 p^{7} T^{19} + 5938 p^{8} T^{20} - 172 p^{9} T^{21} + 8 p^{10} T^{22} - 4 p^{11} T^{23} + p^{12} T^{24} \)
67 \( 1 + 50 T + 1250 T^{2} + 22736 T^{3} + 354061 T^{4} + 4890436 T^{5} + 60408398 T^{6} + 686964646 T^{7} + 7328407750 T^{8} + 73141121374 T^{9} + 685298903426 T^{10} + 6094145044748 T^{11} + 51370207376281 T^{12} + 6094145044748 p T^{13} + 685298903426 p^{2} T^{14} + 73141121374 p^{3} T^{15} + 7328407750 p^{4} T^{16} + 686964646 p^{5} T^{17} + 60408398 p^{6} T^{18} + 4890436 p^{7} T^{19} + 354061 p^{8} T^{20} + 22736 p^{9} T^{21} + 1250 p^{10} T^{22} + 50 p^{11} T^{23} + p^{12} T^{24} \)
71 \( 1 - 596 T^{2} + 174954 T^{4} - 33295492 T^{6} + 4561416063 T^{8} - 472931841704 T^{10} + 38004556050028 T^{12} - 472931841704 p^{2} T^{14} + 4561416063 p^{4} T^{16} - 33295492 p^{6} T^{18} + 174954 p^{8} T^{20} - 596 p^{10} T^{22} + p^{12} T^{24} \)
73 \( 1 - 538 T^{2} + 147485 T^{4} - 26955150 T^{6} + 3625911418 T^{8} - 376343620610 T^{10} + 30824747951477 T^{12} - 376343620610 p^{2} T^{14} + 3625911418 p^{4} T^{16} - 26955150 p^{6} T^{18} + 147485 p^{8} T^{20} - 538 p^{10} T^{22} + p^{12} T^{24} \)
79 \( ( 1 + 6 T + 24 T^{2} - 1606 T^{3} - 2953 T^{4} + 3268 T^{5} + 1470256 T^{6} + 3268 p T^{7} - 2953 p^{2} T^{8} - 1606 p^{3} T^{9} + 24 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
83 \( 1 - 2 T + 2 T^{2} + 328 T^{3} + 11541 T^{4} - 37420 T^{5} + 105550 T^{6} + 4780250 T^{7} - 17553450 T^{8} + 38041522 T^{9} + 1008921506 T^{10} + 33532735084 T^{11} - 653736173231 T^{12} + 33532735084 p T^{13} + 1008921506 p^{2} T^{14} + 38041522 p^{3} T^{15} - 17553450 p^{4} T^{16} + 4780250 p^{5} T^{17} + 105550 p^{6} T^{18} - 37420 p^{7} T^{19} + 11541 p^{8} T^{20} + 328 p^{9} T^{21} + 2 p^{10} T^{22} - 2 p^{11} T^{23} + p^{12} T^{24} \)
89 \( 1 - 538 T^{2} + 147933 T^{4} - 27536782 T^{6} + 3885648250 T^{8} - 443968555266 T^{10} + 42748473802229 T^{12} - 443968555266 p^{2} T^{14} + 3885648250 p^{4} T^{16} - 27536782 p^{6} T^{18} + 147933 p^{8} T^{20} - 538 p^{10} T^{22} + p^{12} T^{24} \)
97 \( ( 1 + 258 T^{2} + 1088 T^{3} + 29759 T^{4} + 253120 T^{5} + 2781052 T^{6} + 253120 p T^{7} + 29759 p^{2} T^{8} + 1088 p^{3} T^{9} + 258 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.06472284037687108556718624411, −2.87777468897016129294984629859, −2.67429335834191737091228008334, −2.66271048269007699597306245368, −2.51917350281584931454119406604, −2.48395285654181108102371275745, −2.37422246045480885860770404154, −2.33455078684627712022838956721, −2.23001939534301278978232870453, −2.10902096273311073653687389858, −1.92628154301381701981510341338, −1.76721791164901375600833264557, −1.69744029528121576328558314942, −1.61577287097955448902983249498, −1.60824819146909461756682557328, −1.50014047497346824061973168918, −1.39552942748050512905860210648, −1.01712954267681618746039681409, −0.933627363233207720958346766151, −0.926771245691294866595171530258, −0.869748646613034443958221148599, −0.60549631743560578158524955174, −0.52187373672974625745534128162, −0.37352017714648012541383157869, −0.079876472159615510897191189477, 0.079876472159615510897191189477, 0.37352017714648012541383157869, 0.52187373672974625745534128162, 0.60549631743560578158524955174, 0.869748646613034443958221148599, 0.926771245691294866595171530258, 0.933627363233207720958346766151, 1.01712954267681618746039681409, 1.39552942748050512905860210648, 1.50014047497346824061973168918, 1.60824819146909461756682557328, 1.61577287097955448902983249498, 1.69744029528121576328558314942, 1.76721791164901375600833264557, 1.92628154301381701981510341338, 2.10902096273311073653687389858, 2.23001939534301278978232870453, 2.33455078684627712022838956721, 2.37422246045480885860770404154, 2.48395285654181108102371275745, 2.51917350281584931454119406604, 2.66271048269007699597306245368, 2.67429335834191737091228008334, 2.87777468897016129294984629859, 3.06472284037687108556718624411

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.