L(s) = 1 | − 6·41-s + 64-s − 12·89-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯ |
L(s) = 1 | − 6·41-s + 64-s − 12·89-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 5^{24} \cdot 19^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 5^{24} \cdot 19^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.413668221\times10^{-5}\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.413668221\times10^{-5}\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T^{6} + T^{12} \) |
| 5 | \( 1 \) |
| 19 | \( ( 1 - T^{3} + T^{6} )^{2} \) |
good | 3 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 7 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 11 | \( ( 1 + T^{3} + T^{6} )^{4} \) |
| 13 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 17 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 23 | \( ( 1 - T^{2} + T^{4} )^{3}( 1 - T^{6} + T^{12} ) \) |
| 29 | \( ( 1 - T^{3} + T^{6} )^{2}( 1 + T^{3} + T^{6} )^{2} \) |
| 31 | \( ( 1 - T + T^{2} )^{6}( 1 + T + T^{2} )^{6} \) |
| 37 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 41 | \( ( 1 + T + T^{2} )^{6}( 1 + T^{3} + T^{6} )^{2} \) |
| 43 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 47 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 53 | \( ( 1 + T^{2} )^{6}( 1 - T^{6} + T^{12} ) \) |
| 59 | \( ( 1 - T^{3} + T^{6} )^{4} \) |
| 61 | \( ( 1 - T^{3} + T^{6} )^{2}( 1 + T^{3} + T^{6} )^{2} \) |
| 67 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 71 | \( ( 1 - T^{3} + T^{6} )^{2}( 1 + T^{3} + T^{6} )^{2} \) |
| 73 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
| 79 | \( ( 1 - T^{3} + T^{6} )^{2}( 1 + T^{3} + T^{6} )^{2} \) |
| 83 | \( ( 1 - T^{2} + T^{4} )^{6} \) |
| 89 | \( ( 1 + T )^{12}( 1 - T^{3} + T^{6} )^{2} \) |
| 97 | \( ( 1 - T^{6} + T^{12} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.80366746769176514471843634747, −2.72987191075976230328357279156, −2.57739145307573726846400788545, −2.54552651539510379931434189431, −2.52012124029436483836010643187, −2.50717571169214915264546531428, −2.44514766464527012564157558600, −2.14909085073748212892311383992, −2.04905647114621949797222304320, −1.88485608154986027429513077359, −1.80345465476923585013076675921, −1.71637813427509189513980870520, −1.70870756343875180248521877538, −1.65871990825826427361377317461, −1.60945670089102455026612486123, −1.54056080972528817997209847102, −1.52863128661068222437468926906, −1.44429319361481778165190947211, −1.06351610639851759491848549362, −1.02978445708095806744248117483, −1.02515826655293376180756107969, −0.74751150436094506008877153765, −0.71757907700913506663827882447, −0.40174486317415070186052478663, −0.000832598882436861477407193692,
0.000832598882436861477407193692, 0.40174486317415070186052478663, 0.71757907700913506663827882447, 0.74751150436094506008877153765, 1.02515826655293376180756107969, 1.02978445708095806744248117483, 1.06351610639851759491848549362, 1.44429319361481778165190947211, 1.52863128661068222437468926906, 1.54056080972528817997209847102, 1.60945670089102455026612486123, 1.65871990825826427361377317461, 1.70870756343875180248521877538, 1.71637813427509189513980870520, 1.80345465476923585013076675921, 1.88485608154986027429513077359, 2.04905647114621949797222304320, 2.14909085073748212892311383992, 2.44514766464527012564157558600, 2.50717571169214915264546531428, 2.52012124029436483836010643187, 2.54552651539510379931434189431, 2.57739145307573726846400788545, 2.72987191075976230328357279156, 2.80366746769176514471843634747
Plot not available for L-functions of degree greater than 10.