Properties

Label 24-2880e12-1.1-c1e12-0-0
Degree $24$
Conductor $3.256\times 10^{41}$
Sign $1$
Analytic cond. $2.18793\times 10^{16}$
Root an. cond. $4.79550$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·25-s + 64·43-s − 44·49-s + 8·61-s − 32·67-s − 128·103-s − 32·109-s − 76·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 92·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 4/5·25-s + 9.75·43-s − 6.28·49-s + 1.02·61-s − 3.90·67-s − 12.6·103-s − 3.06·109-s − 6.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 7.07·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{72} \cdot 3^{24} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{72} \cdot 3^{24} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(2^{72} \cdot 3^{24} \cdot 5^{12}\)
Sign: $1$
Analytic conductor: \(2.18793\times 10^{16}\)
Root analytic conductor: \(4.79550\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{2880} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 2^{72} \cdot 3^{24} \cdot 5^{12} ,\ ( \ : [1/2]^{12} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3639954686\)
\(L(\frac12)\) \(\approx\) \(0.3639954686\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 4 T^{2} - 17 T^{4} - 152 T^{6} - 17 p^{2} T^{8} + 4 p^{4} T^{10} + p^{6} T^{12} \)
good7 \( ( 1 + 11 T^{2} + 8 T^{3} + 11 p T^{4} + p^{3} T^{6} )^{4} \)
11 \( ( 1 + 38 T^{2} + 811 T^{4} + 10796 T^{6} + 811 p^{2} T^{8} + 38 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
13 \( ( 1 - 46 T^{2} + 71 p T^{4} - 12828 T^{6} + 71 p^{3} T^{8} - 46 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
17 \( ( 1 + 4 p T^{2} + 2311 T^{4} + 48968 T^{6} + 2311 p^{2} T^{8} + 4 p^{5} T^{10} + p^{6} T^{12} )^{2} \)
19 \( ( 1 - 34 T^{2} + 935 T^{4} - 20604 T^{6} + 935 p^{2} T^{8} - 34 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
23 \( ( 1 - 50 T^{2} + 367 T^{4} + 12196 T^{6} + 367 p^{2} T^{8} - 50 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
29 \( ( 1 - 76 T^{2} + 3391 T^{4} - 114424 T^{6} + 3391 p^{2} T^{8} - 76 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
31 \( ( 1 - 98 T^{2} + 4927 T^{4} - 170300 T^{6} + 4927 p^{2} T^{8} - 98 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
37 \( ( 1 - 178 T^{2} + 14155 T^{4} - 661348 T^{6} + 14155 p^{2} T^{8} - 178 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
41 \( ( 1 - 144 T^{2} + 11315 T^{4} - 13856 p T^{6} + 11315 p^{2} T^{8} - 144 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
43 \( ( 1 - 16 T + 137 T^{2} - 864 T^{3} + 137 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} )^{4} \)
47 \( ( 1 - 106 T^{2} + 5743 T^{4} - 227980 T^{6} + 5743 p^{2} T^{8} - 106 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
53 \( ( 1 + 12 T^{2} + 7727 T^{4} + 58168 T^{6} + 7727 p^{2} T^{8} + 12 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
59 \( ( 1 + 134 T^{2} + 15947 T^{4} + 1000044 T^{6} + 15947 p^{2} T^{8} + 134 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
61 \( ( 1 - 2 T + 83 T^{2} + 84 T^{3} + 83 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{4} \)
67 \( ( 1 + 8 T + 121 T^{2} + 560 T^{3} + 121 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} )^{4} \)
71 \( ( 1 + 170 T^{2} + 18527 T^{4} + 1427916 T^{6} + 18527 p^{2} T^{8} + 170 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
73 \( ( 1 - 162 T^{2} + 15215 T^{4} - 1057532 T^{6} + 15215 p^{2} T^{8} - 162 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
79 \( ( 1 - 130 T^{2} + 14495 T^{4} - 1438332 T^{6} + 14495 p^{2} T^{8} - 130 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
83 \( ( 1 - 242 T^{2} + 33959 T^{4} - 3241692 T^{6} + 33959 p^{2} T^{8} - 242 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
89 \( ( 1 - 416 T^{2} + 78163 T^{4} - 8732480 T^{6} + 78163 p^{2} T^{8} - 416 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
97 \( ( 1 - 306 T^{2} + 58751 T^{4} - 6745628 T^{6} + 58751 p^{2} T^{8} - 306 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.71348408588424379223304981334, −2.70171194359273730554263140953, −2.55199476915383526088286276823, −2.33704877595951251345393244888, −2.33159283872033197777260204765, −2.29885310673172284827419518718, −2.21100804720650201730380267666, −1.96058825722020031659930273070, −1.94107138693063691000430367026, −1.92078513990209798930461967261, −1.75232363888411575779737400025, −1.62730752007841961212195913785, −1.57421901414967355904167024539, −1.43812770736163484205013540301, −1.34102463781576689788760272913, −1.31374091801421371347929113971, −1.29803643348209330358085973103, −0.987573214026886310736744210539, −0.924053482626868755181841650178, −0.882441988787963850168388773633, −0.65301730367719336750483205831, −0.58802581233002850835911473375, −0.33186191198220118403777224063, −0.25796482104273300293722961271, −0.03824887612379348137286960948, 0.03824887612379348137286960948, 0.25796482104273300293722961271, 0.33186191198220118403777224063, 0.58802581233002850835911473375, 0.65301730367719336750483205831, 0.882441988787963850168388773633, 0.924053482626868755181841650178, 0.987573214026886310736744210539, 1.29803643348209330358085973103, 1.31374091801421371347929113971, 1.34102463781576689788760272913, 1.43812770736163484205013540301, 1.57421901414967355904167024539, 1.62730752007841961212195913785, 1.75232363888411575779737400025, 1.92078513990209798930461967261, 1.94107138693063691000430367026, 1.96058825722020031659930273070, 2.21100804720650201730380267666, 2.29885310673172284827419518718, 2.33159283872033197777260204765, 2.33704877595951251345393244888, 2.55199476915383526088286276823, 2.70171194359273730554263140953, 2.71348408588424379223304981334

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.