Properties

Label 24-26e24-1.1-c0e12-0-0
Degree $24$
Conductor $9.107\times 10^{33}$
Sign $1$
Analytic cond. $2.17393\times 10^{-6}$
Root an. cond. $0.580833$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·5-s − 9-s + 2·10-s − 13-s − 2·17-s + 18-s + 25-s + 26-s − 2·29-s + 2·34-s − 2·37-s − 2·41-s + 2·45-s − 49-s − 50-s + 11·53-s + 2·58-s − 2·61-s + 2·65-s − 2·73-s + 2·74-s + 2·82-s + 4·85-s − 2·89-s − 2·90-s − 2·97-s + ⋯
L(s)  = 1  − 2-s − 2·5-s − 9-s + 2·10-s − 13-s − 2·17-s + 18-s + 25-s + 26-s − 2·29-s + 2·34-s − 2·37-s − 2·41-s + 2·45-s − 49-s − 50-s + 11·53-s + 2·58-s − 2·61-s + 2·65-s − 2·73-s + 2·74-s + 2·82-s + 4·85-s − 2·89-s − 2·90-s − 2·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(2^{24} \cdot 13^{24}\)
Sign: $1$
Analytic conductor: \(2.17393\times 10^{-6}\)
Root analytic conductor: \(0.580833\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{676} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 2^{24} \cdot 13^{24} ,\ ( \ : [0]^{12} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.01886559983\)
\(L(\frac12)\) \(\approx\) \(0.01886559983\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} \)
13 \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} \)
good3 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
5 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
7 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
11 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
17 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
19 \( ( 1 - T )^{12}( 1 + T )^{12} \)
23 \( ( 1 - T )^{12}( 1 + T )^{12} \)
29 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
31 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
37 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
41 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
43 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
47 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
53 \( ( 1 - T )^{12}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
59 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
61 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
67 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
71 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
73 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
79 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
83 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} - T^{11} + T^{12} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} ) \)
89 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
97 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} + T^{11} + T^{12} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.72131677100435706249242026016, −3.67714346617878001720937631780, −3.67121970088564452404691261713, −3.59350879385343550261510036911, −3.55092205259693467365788861156, −3.27824658481849244741514287511, −3.08751214736558734334412519571, −2.78473885491380685740357927708, −2.72049659466721033071999556188, −2.69346604032212873654801076368, −2.67410172886171017547133962438, −2.63172051746274422899359215282, −2.53181459217229996019299502252, −2.53011988281051488804720743721, −2.07918203622080666685524679789, −2.07114542005370387748307790459, −1.99426537006410618343952335048, −1.98182556340802268004464746381, −1.70544230061995876985503855595, −1.58462365450837777129947713046, −1.50221597312602767264164796129, −1.08924276450890023094629887354, −1.00965903368370047173203744361, −0.898591768166891928908080601138, −0.26477992221385678213540730105, 0.26477992221385678213540730105, 0.898591768166891928908080601138, 1.00965903368370047173203744361, 1.08924276450890023094629887354, 1.50221597312602767264164796129, 1.58462365450837777129947713046, 1.70544230061995876985503855595, 1.98182556340802268004464746381, 1.99426537006410618343952335048, 2.07114542005370387748307790459, 2.07918203622080666685524679789, 2.53011988281051488804720743721, 2.53181459217229996019299502252, 2.63172051746274422899359215282, 2.67410172886171017547133962438, 2.69346604032212873654801076368, 2.72049659466721033071999556188, 2.78473885491380685740357927708, 3.08751214736558734334412519571, 3.27824658481849244741514287511, 3.55092205259693467365788861156, 3.59350879385343550261510036911, 3.67121970088564452404691261713, 3.67714346617878001720937631780, 3.72131677100435706249242026016

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.