Properties

Label 24-15e24-1.1-c10e12-0-0
Degree $24$
Conductor $1.683\times 10^{28}$
Sign $1$
Analytic cond. $7.28460\times 10^{25}$
Root an. cond. $11.9563$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.70e3·4-s − 5.21e4·7-s + 2.76e5·13-s + 1.00e7·16-s + 1.89e6·19-s − 2.45e8·28-s − 1.21e8·31-s − 1.01e8·37-s + 1.55e8·43-s − 7.23e8·49-s + 1.30e9·52-s + 2.94e8·61-s + 1.28e10·64-s − 5.07e9·67-s − 2.78e9·73-s + 8.92e9·76-s − 4.71e9·79-s − 1.44e10·91-s + 2.51e10·97-s + 2.68e10·103-s + 2.86e9·109-s − 5.22e11·112-s + 1.77e11·121-s − 5.71e11·124-s + 127-s + 131-s − 9.89e10·133-s + ⋯
L(s)  = 1  + 4.59·4-s − 3.10·7-s + 0.745·13-s + 9.55·16-s + 0.766·19-s − 14.2·28-s − 4.23·31-s − 1.46·37-s + 1.05·43-s − 2.56·49-s + 3.42·52-s + 0.348·61-s + 12.0·64-s − 3.75·67-s − 1.34·73-s + 3.52·76-s − 1.53·79-s − 2.31·91-s + 2.92·97-s + 2.31·103-s + 0.186·109-s − 29.6·112-s + 6.83·121-s − 19.4·124-s − 2.37·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 5^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(11-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 5^{24}\right)^{s/2} \, \Gamma_{\C}(s+5)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(3^{24} \cdot 5^{24}\)
Sign: $1$
Analytic conductor: \(7.28460\times 10^{25}\)
Root analytic conductor: \(11.9563\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 3^{24} \cdot 5^{24} ,\ ( \ : [5]^{12} ),\ 1 )\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(21.17464421\)
\(L(\frac12)\) \(\approx\) \(21.17464421\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 2353 p T^{2} + 12130041 T^{4} - 356922295 p^{6} T^{6} + 66296541795 p^{9} T^{8} - 2591631199319 p^{14} T^{10} + 708816088715561 p^{16} T^{12} - 2591631199319 p^{34} T^{14} + 66296541795 p^{49} T^{16} - 356922295 p^{66} T^{18} + 12130041 p^{80} T^{20} - 2353 p^{101} T^{22} + p^{120} T^{24} \)
7 \( ( 1 + 26072 T + 1381305048 T^{2} + 4433473090408 p T^{3} + 17976769472844627 p^{2} T^{4} + 47289526066329566288 p^{3} T^{5} + \)\(13\!\cdots\!52\)\( p^{4} T^{6} + 47289526066329566288 p^{13} T^{7} + 17976769472844627 p^{22} T^{8} + 4433473090408 p^{31} T^{9} + 1381305048 p^{40} T^{10} + 26072 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
11 \( 1 - 177177151784 T^{2} + \)\(15\!\cdots\!66\)\( T^{4} - \)\(90\!\cdots\!20\)\( T^{6} + \)\(39\!\cdots\!15\)\( T^{8} - \)\(13\!\cdots\!04\)\( T^{10} + \)\(38\!\cdots\!56\)\( T^{12} - \)\(13\!\cdots\!04\)\( p^{20} T^{14} + \)\(39\!\cdots\!15\)\( p^{40} T^{16} - \)\(90\!\cdots\!20\)\( p^{60} T^{18} + \)\(15\!\cdots\!66\)\( p^{80} T^{20} - 177177151784 p^{100} T^{22} + p^{120} T^{24} \)
13 \( ( 1 - 138308 T + 435987712868 T^{2} + 19306563548398076 T^{3} + \)\(61\!\cdots\!63\)\( T^{4} + \)\(21\!\cdots\!84\)\( T^{5} + \)\(56\!\cdots\!92\)\( T^{6} + \)\(21\!\cdots\!84\)\( p^{10} T^{7} + \)\(61\!\cdots\!63\)\( p^{20} T^{8} + 19306563548398076 p^{30} T^{9} + 435987712868 p^{40} T^{10} - 138308 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
17 \( 1 - 13539943740236 T^{2} + \)\(90\!\cdots\!26\)\( T^{4} - \)\(24\!\cdots\!60\)\( p T^{6} + \)\(13\!\cdots\!15\)\( T^{8} - \)\(37\!\cdots\!56\)\( T^{10} + \)\(83\!\cdots\!16\)\( T^{12} - \)\(37\!\cdots\!56\)\( p^{20} T^{14} + \)\(13\!\cdots\!15\)\( p^{40} T^{16} - \)\(24\!\cdots\!60\)\( p^{61} T^{18} + \)\(90\!\cdots\!26\)\( p^{80} T^{20} - 13539943740236 p^{100} T^{22} + p^{120} T^{24} \)
19 \( ( 1 - 948640 T + 21229765294526 T^{2} - 23842053931646132000 T^{3} + \)\(20\!\cdots\!95\)\( T^{4} - \)\(26\!\cdots\!00\)\( T^{5} + \)\(13\!\cdots\!40\)\( T^{6} - \)\(26\!\cdots\!00\)\( p^{10} T^{7} + \)\(20\!\cdots\!95\)\( p^{20} T^{8} - 23842053931646132000 p^{30} T^{9} + 21229765294526 p^{40} T^{10} - 948640 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
23 \( 1 - 226029510168420 T^{2} + \)\(27\!\cdots\!86\)\( T^{4} - \)\(22\!\cdots\!00\)\( T^{6} + \)\(14\!\cdots\!35\)\( T^{8} - \)\(73\!\cdots\!00\)\( T^{10} + \)\(32\!\cdots\!00\)\( T^{12} - \)\(73\!\cdots\!00\)\( p^{20} T^{14} + \)\(14\!\cdots\!35\)\( p^{40} T^{16} - \)\(22\!\cdots\!00\)\( p^{60} T^{18} + \)\(27\!\cdots\!86\)\( p^{80} T^{20} - 226029510168420 p^{100} T^{22} + p^{120} T^{24} \)
29 \( 1 - 2386188356328500 T^{2} + \)\(28\!\cdots\!06\)\( T^{4} - \)\(23\!\cdots\!00\)\( T^{6} + \)\(15\!\cdots\!15\)\( T^{8} - \)\(83\!\cdots\!00\)\( T^{10} + \)\(37\!\cdots\!20\)\( T^{12} - \)\(83\!\cdots\!00\)\( p^{20} T^{14} + \)\(15\!\cdots\!15\)\( p^{40} T^{16} - \)\(23\!\cdots\!00\)\( p^{60} T^{18} + \)\(28\!\cdots\!06\)\( p^{80} T^{20} - 2386188356328500 p^{100} T^{22} + p^{120} T^{24} \)
31 \( ( 1 + 60679444 T + 4294902756137226 T^{2} + \)\(16\!\cdots\!80\)\( T^{3} + \)\(66\!\cdots\!15\)\( T^{4} + \)\(18\!\cdots\!44\)\( T^{5} + \)\(62\!\cdots\!36\)\( T^{6} + \)\(18\!\cdots\!44\)\( p^{10} T^{7} + \)\(66\!\cdots\!15\)\( p^{20} T^{8} + \)\(16\!\cdots\!80\)\( p^{30} T^{9} + 4294902756137226 p^{40} T^{10} + 60679444 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
37 \( ( 1 + 50888004 T + 14293378674677940 T^{2} + \)\(56\!\cdots\!28\)\( T^{3} + \)\(11\!\cdots\!75\)\( T^{4} + \)\(39\!\cdots\!40\)\( T^{5} + \)\(66\!\cdots\!92\)\( T^{6} + \)\(39\!\cdots\!40\)\( p^{10} T^{7} + \)\(11\!\cdots\!75\)\( p^{20} T^{8} + \)\(56\!\cdots\!28\)\( p^{30} T^{9} + 14293378674677940 p^{40} T^{10} + 50888004 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
41 \( 1 - 87831691203055040 T^{2} + \)\(39\!\cdots\!86\)\( T^{4} - \)\(12\!\cdots\!00\)\( T^{6} + \)\(28\!\cdots\!35\)\( T^{8} - \)\(52\!\cdots\!00\)\( T^{10} + \)\(77\!\cdots\!00\)\( T^{12} - \)\(52\!\cdots\!00\)\( p^{20} T^{14} + \)\(28\!\cdots\!35\)\( p^{40} T^{16} - \)\(12\!\cdots\!00\)\( p^{60} T^{18} + \)\(39\!\cdots\!86\)\( p^{80} T^{20} - 87831691203055040 p^{100} T^{22} + p^{120} T^{24} \)
43 \( ( 1 - 77888456 T + 83775798334453070 T^{2} - \)\(47\!\cdots\!72\)\( T^{3} + \)\(35\!\cdots\!55\)\( T^{4} - \)\(16\!\cdots\!00\)\( T^{5} + \)\(94\!\cdots\!92\)\( T^{6} - \)\(16\!\cdots\!00\)\( p^{10} T^{7} + \)\(35\!\cdots\!55\)\( p^{20} T^{8} - \)\(47\!\cdots\!72\)\( p^{30} T^{9} + 83775798334453070 p^{40} T^{10} - 77888456 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
47 \( 1 + 23617465618972420 T^{2} + \)\(33\!\cdots\!86\)\( T^{4} - \)\(10\!\cdots\!00\)\( T^{6} + \)\(37\!\cdots\!35\)\( T^{8} - \)\(69\!\cdots\!00\)\( T^{10} + \)\(56\!\cdots\!00\)\( T^{12} - \)\(69\!\cdots\!00\)\( p^{20} T^{14} + \)\(37\!\cdots\!35\)\( p^{40} T^{16} - \)\(10\!\cdots\!00\)\( p^{60} T^{18} + \)\(33\!\cdots\!86\)\( p^{80} T^{20} + 23617465618972420 p^{100} T^{22} + p^{120} T^{24} \)
53 \( 1 - 798387475246927100 T^{2} + \)\(38\!\cdots\!26\)\( T^{4} - \)\(13\!\cdots\!00\)\( T^{6} + \)\(36\!\cdots\!95\)\( T^{8} - \)\(81\!\cdots\!00\)\( T^{10} + \)\(15\!\cdots\!40\)\( T^{12} - \)\(81\!\cdots\!00\)\( p^{20} T^{14} + \)\(36\!\cdots\!95\)\( p^{40} T^{16} - \)\(13\!\cdots\!00\)\( p^{60} T^{18} + \)\(38\!\cdots\!26\)\( p^{80} T^{20} - 798387475246927100 p^{100} T^{22} + p^{120} T^{24} \)
59 \( 1 - 1014582237425805224 T^{2} + \)\(79\!\cdots\!66\)\( T^{4} - \)\(63\!\cdots\!20\)\( T^{6} + \)\(46\!\cdots\!15\)\( T^{8} - \)\(25\!\cdots\!04\)\( T^{10} + \)\(13\!\cdots\!16\)\( T^{12} - \)\(25\!\cdots\!04\)\( p^{20} T^{14} + \)\(46\!\cdots\!15\)\( p^{40} T^{16} - \)\(63\!\cdots\!20\)\( p^{60} T^{18} + \)\(79\!\cdots\!66\)\( p^{80} T^{20} - 1014582237425805224 p^{100} T^{22} + p^{120} T^{24} \)
61 \( ( 1 - 147192388 T + 3190256525173143386 T^{2} - \)\(40\!\cdots\!20\)\( T^{3} + \)\(47\!\cdots\!55\)\( T^{4} - \)\(52\!\cdots\!88\)\( T^{5} + \)\(42\!\cdots\!24\)\( T^{6} - \)\(52\!\cdots\!88\)\( p^{10} T^{7} + \)\(47\!\cdots\!55\)\( p^{20} T^{8} - \)\(40\!\cdots\!20\)\( p^{30} T^{9} + 3190256525173143386 p^{40} T^{10} - 147192388 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
67 \( ( 1 + 2537593976 T + 9448468876581813990 T^{2} + \)\(17\!\cdots\!52\)\( T^{3} + \)\(37\!\cdots\!35\)\( T^{4} + \)\(55\!\cdots\!20\)\( T^{5} + \)\(87\!\cdots\!32\)\( T^{6} + \)\(55\!\cdots\!20\)\( p^{10} T^{7} + \)\(37\!\cdots\!35\)\( p^{20} T^{8} + \)\(17\!\cdots\!52\)\( p^{30} T^{9} + 9448468876581813990 p^{40} T^{10} + 2537593976 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
71 \( 1 - 21927496318634330540 T^{2} + \)\(20\!\cdots\!26\)\( T^{4} - \)\(10\!\cdots\!00\)\( T^{6} + \)\(25\!\cdots\!95\)\( T^{8} - \)\(42\!\cdots\!00\)\( T^{10} - \)\(13\!\cdots\!60\)\( T^{12} - \)\(42\!\cdots\!00\)\( p^{20} T^{14} + \)\(25\!\cdots\!95\)\( p^{40} T^{16} - \)\(10\!\cdots\!00\)\( p^{60} T^{18} + \)\(20\!\cdots\!26\)\( p^{80} T^{20} - 21927496318634330540 p^{100} T^{22} + p^{120} T^{24} \)
73 \( ( 1 + 1394387332 T + 18937045779026394698 T^{2} + \)\(26\!\cdots\!36\)\( T^{3} + \)\(17\!\cdots\!23\)\( T^{4} + \)\(20\!\cdots\!04\)\( T^{5} + \)\(95\!\cdots\!52\)\( T^{6} + \)\(20\!\cdots\!04\)\( p^{10} T^{7} + \)\(17\!\cdots\!23\)\( p^{20} T^{8} + \)\(26\!\cdots\!36\)\( p^{30} T^{9} + 18937045779026394698 p^{40} T^{10} + 1394387332 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
79 \( ( 1 + 2355487444 T + 21527905744104060426 T^{2} + \)\(45\!\cdots\!80\)\( T^{3} + \)\(21\!\cdots\!15\)\( T^{4} + \)\(13\!\cdots\!44\)\( T^{5} + \)\(18\!\cdots\!36\)\( T^{6} + \)\(13\!\cdots\!44\)\( p^{10} T^{7} + \)\(21\!\cdots\!15\)\( p^{20} T^{8} + \)\(45\!\cdots\!80\)\( p^{30} T^{9} + 21527905744104060426 p^{40} T^{10} + 2355487444 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
83 \( 1 - 85571656789946386620 T^{2} + \)\(43\!\cdots\!86\)\( T^{4} - \)\(15\!\cdots\!00\)\( T^{6} + \)\(40\!\cdots\!35\)\( T^{8} - \)\(86\!\cdots\!00\)\( T^{10} + \)\(14\!\cdots\!00\)\( T^{12} - \)\(86\!\cdots\!00\)\( p^{20} T^{14} + \)\(40\!\cdots\!35\)\( p^{40} T^{16} - \)\(15\!\cdots\!00\)\( p^{60} T^{18} + \)\(43\!\cdots\!86\)\( p^{80} T^{20} - 85571656789946386620 p^{100} T^{22} + p^{120} T^{24} \)
89 \( 1 - 52539612244756358304 T^{2} + \)\(36\!\cdots\!66\)\( T^{4} - \)\(16\!\cdots\!20\)\( T^{6} + \)\(71\!\cdots\!15\)\( T^{8} - \)\(24\!\cdots\!04\)\( T^{10} + \)\(86\!\cdots\!36\)\( T^{12} - \)\(24\!\cdots\!04\)\( p^{20} T^{14} + \)\(71\!\cdots\!15\)\( p^{40} T^{16} - \)\(16\!\cdots\!20\)\( p^{60} T^{18} + \)\(36\!\cdots\!66\)\( p^{80} T^{20} - 52539612244756358304 p^{100} T^{22} + p^{120} T^{24} \)
97 \( ( 1 - 12557923164 T + \)\(28\!\cdots\!70\)\( T^{2} - \)\(24\!\cdots\!28\)\( T^{3} + \)\(31\!\cdots\!75\)\( T^{4} - \)\(20\!\cdots\!80\)\( T^{5} + \)\(23\!\cdots\!72\)\( T^{6} - \)\(20\!\cdots\!80\)\( p^{10} T^{7} + \)\(31\!\cdots\!75\)\( p^{20} T^{8} - \)\(24\!\cdots\!28\)\( p^{30} T^{9} + \)\(28\!\cdots\!70\)\( p^{40} T^{10} - 12557923164 p^{50} T^{11} + p^{60} T^{12} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.73736753778797568129978071486, −2.43740052717937955540898663199, −2.33914997170433832582345139039, −2.07555788177703231028223764349, −1.90714938920162430985465527697, −1.90442969394160002649406604485, −1.87911559081899381011338437444, −1.87404065672850506613269648076, −1.80633310809129597429708633346, −1.75787291444263541605961035625, −1.69018128520024487680827063127, −1.67889327211531914557417756383, −1.56268516754701185220108264404, −1.28708166717013648985344021712, −1.25162240295439135611866139510, −0.936571386819965092064327225101, −0.804606899280989596316865587409, −0.73483853528480367044020444271, −0.66205472713089472741536124087, −0.65647519884527180275800435485, −0.47578702337513975141856671014, −0.35480960356893431664266728565, −0.33398732491416712520493411571, −0.15408245959714151059939510006, −0.10798066949398747323381948624, 0.10798066949398747323381948624, 0.15408245959714151059939510006, 0.33398732491416712520493411571, 0.35480960356893431664266728565, 0.47578702337513975141856671014, 0.65647519884527180275800435485, 0.66205472713089472741536124087, 0.73483853528480367044020444271, 0.804606899280989596316865587409, 0.936571386819965092064327225101, 1.25162240295439135611866139510, 1.28708166717013648985344021712, 1.56268516754701185220108264404, 1.67889327211531914557417756383, 1.69018128520024487680827063127, 1.75787291444263541605961035625, 1.80633310809129597429708633346, 1.87404065672850506613269648076, 1.87911559081899381011338437444, 1.90442969394160002649406604485, 1.90714938920162430985465527697, 2.07555788177703231028223764349, 2.33914997170433832582345139039, 2.43740052717937955540898663199, 2.73736753778797568129978071486

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.