Properties

Label 24-1305e12-1.1-c1e12-0-0
Degree $24$
Conductor $2.440\times 10^{37}$
Sign $1$
Analytic cond. $1.63927\times 10^{12}$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s − 12·11-s + 4·16-s + 20·19-s + 4·25-s − 12·29-s − 16·31-s − 32·41-s − 48·44-s + 44·49-s + 44·59-s − 52·61-s − 6·64-s − 20·71-s + 80·76-s + 4·79-s + 68·89-s + 16·100-s − 92·101-s − 8·109-s − 48·116-s + 8·121-s − 64·124-s − 4·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 2·4-s − 3.61·11-s + 16-s + 4.58·19-s + 4/5·25-s − 2.22·29-s − 2.87·31-s − 4.99·41-s − 7.23·44-s + 44/7·49-s + 5.72·59-s − 6.65·61-s − 3/4·64-s − 2.37·71-s + 9.17·76-s + 0.450·79-s + 7.20·89-s + 8/5·100-s − 9.15·101-s − 0.766·109-s − 4.45·116-s + 8/11·121-s − 5.74·124-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 5^{12} \cdot 29^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 5^{12} \cdot 29^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(3^{24} \cdot 5^{12} \cdot 29^{12}\)
Sign: $1$
Analytic conductor: \(1.63927\times 10^{12}\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 3^{24} \cdot 5^{12} \cdot 29^{12} ,\ ( \ : [1/2]^{12} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.341305395\)
\(L(\frac12)\) \(\approx\) \(1.341305395\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 4 T^{2} + 4 T^{3} + 19 T^{4} - 36 T^{5} - 16 p T^{6} - 36 p T^{7} + 19 p^{2} T^{8} + 4 p^{3} T^{9} - 4 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 + T )^{12} \)
good2 \( 1 - p^{2} T^{2} + 3 p^{2} T^{4} - 13 p T^{6} + p^{6} T^{8} - 21 p^{3} T^{10} + 365 T^{12} - 21 p^{5} T^{14} + p^{10} T^{16} - 13 p^{7} T^{18} + 3 p^{10} T^{20} - p^{12} T^{22} + p^{12} T^{24} \)
7 \( 1 - 44 T^{2} + 136 p T^{4} - 13856 T^{6} + 156004 T^{8} - 1443108 T^{10} + 11092730 T^{12} - 1443108 p^{2} T^{14} + 156004 p^{4} T^{16} - 13856 p^{6} T^{18} + 136 p^{9} T^{20} - 44 p^{10} T^{22} + p^{12} T^{24} \)
11 \( ( 1 + 6 T + 50 T^{2} + 200 T^{3} + 992 T^{4} + 2994 T^{5} + 12416 T^{6} + 2994 p T^{7} + 992 p^{2} T^{8} + 200 p^{3} T^{9} + 50 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
13 \( 1 - 56 T^{2} + 1396 T^{4} - 22796 T^{6} + 289444 T^{8} - 2802576 T^{10} + 27392294 T^{12} - 2802576 p^{2} T^{14} + 289444 p^{4} T^{16} - 22796 p^{6} T^{18} + 1396 p^{8} T^{20} - 56 p^{10} T^{22} + p^{12} T^{24} \)
17 \( 1 - 60 T^{2} + 1844 T^{4} - 50404 T^{6} + 1267244 T^{8} - 25697188 T^{10} + 450597318 T^{12} - 25697188 p^{2} T^{14} + 1267244 p^{4} T^{16} - 50404 p^{6} T^{18} + 1844 p^{8} T^{20} - 60 p^{10} T^{22} + p^{12} T^{24} \)
19 \( ( 1 - 10 T + 84 T^{2} - 462 T^{3} + 2723 T^{4} - 13348 T^{5} + 66376 T^{6} - 13348 p T^{7} + 2723 p^{2} T^{8} - 462 p^{3} T^{9} + 84 p^{4} T^{10} - 10 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
23 \( 1 - 180 T^{2} + 14562 T^{4} - 697796 T^{6} + 22380559 T^{8} - 544017928 T^{10} + 12197286428 T^{12} - 544017928 p^{2} T^{14} + 22380559 p^{4} T^{16} - 697796 p^{6} T^{18} + 14562 p^{8} T^{20} - 180 p^{10} T^{22} + p^{12} T^{24} \)
31 \( ( 1 + 8 T + 98 T^{2} + 356 T^{3} + 3639 T^{4} + 11108 T^{5} + 130068 T^{6} + 11108 p T^{7} + 3639 p^{2} T^{8} + 356 p^{3} T^{9} + 98 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
37 \( 1 - 80 T^{2} + 7606 T^{4} - 392720 T^{6} + 21943231 T^{8} - 855501024 T^{10} + 36696567668 T^{12} - 855501024 p^{2} T^{14} + 21943231 p^{4} T^{16} - 392720 p^{6} T^{18} + 7606 p^{8} T^{20} - 80 p^{10} T^{22} + p^{12} T^{24} \)
41 \( ( 1 + 16 T + 222 T^{2} + 2320 T^{3} + 21567 T^{4} + 166432 T^{5} + 1134052 T^{6} + 166432 p T^{7} + 21567 p^{2} T^{8} + 2320 p^{3} T^{9} + 222 p^{4} T^{10} + 16 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
43 \( 1 - 156 T^{2} + 13582 T^{4} - 861916 T^{6} + 47246079 T^{8} - 2406241768 T^{10} + 110221496004 T^{12} - 2406241768 p^{2} T^{14} + 47246079 p^{4} T^{16} - 861916 p^{6} T^{18} + 13582 p^{8} T^{20} - 156 p^{10} T^{22} + p^{12} T^{24} \)
47 \( 1 - 420 T^{2} + 85364 T^{4} - 11109004 T^{6} + 1030089164 T^{8} - 71622208108 T^{10} + 3826287085638 T^{12} - 71622208108 p^{2} T^{14} + 1030089164 p^{4} T^{16} - 11109004 p^{6} T^{18} + 85364 p^{8} T^{20} - 420 p^{10} T^{22} + p^{12} T^{24} \)
53 \( 1 - 320 T^{2} + 53538 T^{4} - 6084688 T^{6} + 523808815 T^{8} - 36292173872 T^{10} + 2094938778300 T^{12} - 36292173872 p^{2} T^{14} + 523808815 p^{4} T^{16} - 6084688 p^{6} T^{18} + 53538 p^{8} T^{20} - 320 p^{10} T^{22} + p^{12} T^{24} \)
59 \( ( 1 - 22 T + 372 T^{2} - 4298 T^{3} + 45907 T^{4} - 410572 T^{5} + 3442400 T^{6} - 410572 p T^{7} + 45907 p^{2} T^{8} - 4298 p^{3} T^{9} + 372 p^{4} T^{10} - 22 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
61 \( ( 1 + 26 T + 570 T^{2} + 8494 T^{3} + 106251 T^{4} + 1070992 T^{5} + 9174692 T^{6} + 1070992 p T^{7} + 106251 p^{2} T^{8} + 8494 p^{3} T^{9} + 570 p^{4} T^{10} + 26 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
67 \( 1 - 236 T^{2} + 29224 T^{4} - 2399408 T^{6} + 140031028 T^{8} - 5673900036 T^{10} + 249184874186 T^{12} - 5673900036 p^{2} T^{14} + 140031028 p^{4} T^{16} - 2399408 p^{6} T^{18} + 29224 p^{8} T^{20} - 236 p^{10} T^{22} + p^{12} T^{24} \)
71 \( ( 1 + 10 T + 174 T^{2} + 1530 T^{3} + 22907 T^{4} + 157072 T^{5} + 1675308 T^{6} + 157072 p T^{7} + 22907 p^{2} T^{8} + 1530 p^{3} T^{9} + 174 p^{4} T^{10} + 10 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
73 \( 1 - 616 T^{2} + 184870 T^{4} - 35787240 T^{6} + 4984957839 T^{8} - 527115511152 T^{10} + 43424297181268 T^{12} - 527115511152 p^{2} T^{14} + 4984957839 p^{4} T^{16} - 35787240 p^{6} T^{18} + 184870 p^{8} T^{20} - 616 p^{10} T^{22} + p^{12} T^{24} \)
79 \( ( 1 - 2 T + 240 T^{2} - 886 T^{3} + 28123 T^{4} - 144908 T^{5} + 2416704 T^{6} - 144908 p T^{7} + 28123 p^{2} T^{8} - 886 p^{3} T^{9} + 240 p^{4} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
83 \( 1 - 552 T^{2} + 149066 T^{4} - 26151976 T^{6} + 3380877503 T^{8} - 350762692336 T^{10} + 31097886726348 T^{12} - 350762692336 p^{2} T^{14} + 3380877503 p^{4} T^{16} - 26151976 p^{6} T^{18} + 149066 p^{8} T^{20} - 552 p^{10} T^{22} + p^{12} T^{24} \)
89 \( ( 1 - 34 T + 884 T^{2} - 15808 T^{3} + 239316 T^{4} - 2875498 T^{5} + 30004398 T^{6} - 2875498 p T^{7} + 239316 p^{2} T^{8} - 15808 p^{3} T^{9} + 884 p^{4} T^{10} - 34 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
97 \( 1 - 592 T^{2} + 150674 T^{4} - 20358752 T^{6} + 1263823711 T^{8} + 34692758896 T^{10} - 11527615876708 T^{12} + 34692758896 p^{2} T^{14} + 1263823711 p^{4} T^{16} - 20358752 p^{6} T^{18} + 150674 p^{8} T^{20} - 592 p^{10} T^{22} + p^{12} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.99845054150616283521683998093, −2.94554163812445357247440289525, −2.82944837680644355067929172673, −2.81346818761928824551722964537, −2.62504634502053370994945099204, −2.46098236379939347301758520425, −2.42216914732772039065148939808, −2.39179740552220864057214526050, −2.25798200554752673514102601346, −2.23199338019455519856135134316, −2.17120930831220949092096380969, −2.16636464431100601227427607249, −1.88452240575834175204841029215, −1.77611952244692809886065153407, −1.55004825545321641840850171508, −1.42584367192593605363377023856, −1.35850127342481252984351475844, −1.31302907255214297481008184144, −1.25547384090140798996355541467, −1.16773014761747608494162207437, −1.00137814177975605781126531849, −0.50508313319113510134729190445, −0.47359066027052097360828361037, −0.30119890612260922712815559865, −0.099821713690000123534637619815, 0.099821713690000123534637619815, 0.30119890612260922712815559865, 0.47359066027052097360828361037, 0.50508313319113510134729190445, 1.00137814177975605781126531849, 1.16773014761747608494162207437, 1.25547384090140798996355541467, 1.31302907255214297481008184144, 1.35850127342481252984351475844, 1.42584367192593605363377023856, 1.55004825545321641840850171508, 1.77611952244692809886065153407, 1.88452240575834175204841029215, 2.16636464431100601227427607249, 2.17120930831220949092096380969, 2.23199338019455519856135134316, 2.25798200554752673514102601346, 2.39179740552220864057214526050, 2.42216914732772039065148939808, 2.46098236379939347301758520425, 2.62504634502053370994945099204, 2.81346818761928824551722964537, 2.82944837680644355067929172673, 2.94554163812445357247440289525, 2.99845054150616283521683998093

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.