Properties

Label 24-1152e12-1.1-c1e12-0-3
Degree $24$
Conductor $5.463\times 10^{36}$
Sign $1$
Analytic cond. $3.67075\times 10^{11}$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 2·5-s + 6·7-s + 7·9-s + 4·11-s + 10·13-s − 8·15-s + 4·17-s + 4·19-s + 24·21-s + 8·23-s + 10·25-s + 2·27-s − 2·29-s + 8·31-s + 16·33-s − 12·35-s + 40·39-s − 2·41-s − 2·43-s − 14·45-s − 14·47-s + 30·49-s + 16·51-s + 24·53-s − 8·55-s + 16·57-s + ⋯
L(s)  = 1  + 2.30·3-s − 0.894·5-s + 2.26·7-s + 7/3·9-s + 1.20·11-s + 2.77·13-s − 2.06·15-s + 0.970·17-s + 0.917·19-s + 5.23·21-s + 1.66·23-s + 2·25-s + 0.384·27-s − 0.371·29-s + 1.43·31-s + 2.78·33-s − 2.02·35-s + 6.40·39-s − 0.312·41-s − 0.304·43-s − 2.08·45-s − 2.04·47-s + 30/7·49-s + 2.24·51-s + 3.29·53-s − 1.07·55-s + 2.11·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{84} \cdot 3^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{84} \cdot 3^{24}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(2^{84} \cdot 3^{24}\)
Sign: $1$
Analytic conductor: \(3.67075\times 10^{11}\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{1152} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 2^{84} \cdot 3^{24} ,\ ( \ : [1/2]^{12} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(200.0542253\)
\(L(\frac12)\) \(\approx\) \(200.0542253\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 4 T + p^{2} T^{2} - 10 T^{3} - 5 T^{4} + 14 p T^{5} - 34 p T^{6} + 14 p^{2} T^{7} - 5 p^{2} T^{8} - 10 p^{3} T^{9} + p^{6} T^{10} - 4 p^{5} T^{11} + p^{6} T^{12} \)
good5 \( 1 + 2 T - 6 T^{2} + 4 p T^{3} + 18 p T^{4} - 202 T^{5} - 172 T^{6} + 2034 T^{7} - 282 p T^{8} - 1844 p T^{9} + 26974 T^{10} + 29526 T^{11} - 138266 T^{12} + 29526 p T^{13} + 26974 p^{2} T^{14} - 1844 p^{4} T^{15} - 282 p^{5} T^{16} + 2034 p^{5} T^{17} - 172 p^{6} T^{18} - 202 p^{7} T^{19} + 18 p^{9} T^{20} + 4 p^{10} T^{21} - 6 p^{10} T^{22} + 2 p^{11} T^{23} + p^{12} T^{24} \)
7 \( 1 - 6 T + 6 T^{2} + 16 T^{3} - 6 p T^{4} + 204 T^{5} - 20 p^{2} T^{6} + 3840 T^{7} - 7386 T^{8} - 6824 T^{9} + 49698 T^{10} - 149706 T^{11} + 474394 T^{12} - 149706 p T^{13} + 49698 p^{2} T^{14} - 6824 p^{3} T^{15} - 7386 p^{4} T^{16} + 3840 p^{5} T^{17} - 20 p^{8} T^{18} + 204 p^{7} T^{19} - 6 p^{9} T^{20} + 16 p^{9} T^{21} + 6 p^{10} T^{22} - 6 p^{11} T^{23} + p^{12} T^{24} \)
11 \( 1 - 4 T - 19 T^{2} + 48 T^{3} + 331 T^{4} - 430 T^{5} - 2296 T^{6} + 2796 T^{7} - 14403 T^{8} - 19340 T^{9} + 552863 T^{10} + 26990 T^{11} - 7241418 T^{12} + 26990 p T^{13} + 552863 p^{2} T^{14} - 19340 p^{3} T^{15} - 14403 p^{4} T^{16} + 2796 p^{5} T^{17} - 2296 p^{6} T^{18} - 430 p^{7} T^{19} + 331 p^{8} T^{20} + 48 p^{9} T^{21} - 19 p^{10} T^{22} - 4 p^{11} T^{23} + p^{12} T^{24} \)
13 \( 1 - 10 T + 30 T^{2} - 68 T^{3} + 486 T^{4} - 1390 T^{5} + 28 p T^{6} - 2754 T^{7} + 4410 T^{8} - 99148 T^{9} + 1849474 T^{10} - 6605286 T^{11} + 12214214 T^{12} - 6605286 p T^{13} + 1849474 p^{2} T^{14} - 99148 p^{3} T^{15} + 4410 p^{4} T^{16} - 2754 p^{5} T^{17} + 28 p^{7} T^{18} - 1390 p^{7} T^{19} + 486 p^{8} T^{20} - 68 p^{9} T^{21} + 30 p^{10} T^{22} - 10 p^{11} T^{23} + p^{12} T^{24} \)
17 \( ( 1 - 2 T + 19 T^{2} + 6 T^{3} + 115 T^{4} - 456 T^{5} + 4566 T^{6} - 456 p T^{7} + 115 p^{2} T^{8} + 6 p^{3} T^{9} + 19 p^{4} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
19 \( ( 1 - 2 T + 49 T^{2} - 110 T^{3} + 1635 T^{4} - 3108 T^{5} + 37062 T^{6} - 3108 p T^{7} + 1635 p^{2} T^{8} - 110 p^{3} T^{9} + 49 p^{4} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
23 \( 1 - 8 T - 10 T^{2} + 252 T^{3} - 650 T^{4} - 58 p T^{5} + 7724 T^{6} + 18798 T^{7} - 55530 T^{8} - 2562028 T^{9} + 14851874 T^{10} + 40741060 T^{11} - 563728326 T^{12} + 40741060 p T^{13} + 14851874 p^{2} T^{14} - 2562028 p^{3} T^{15} - 55530 p^{4} T^{16} + 18798 p^{5} T^{17} + 7724 p^{6} T^{18} - 58 p^{8} T^{19} - 650 p^{8} T^{20} + 252 p^{9} T^{21} - 10 p^{10} T^{22} - 8 p^{11} T^{23} + p^{12} T^{24} \)
29 \( 1 + 2 T - 86 T^{2} - 244 T^{3} + 2642 T^{4} + 9254 T^{5} - 80308 T^{6} - 141174 T^{7} + 4438542 T^{8} + 3069156 T^{9} - 146032362 T^{10} - 64819794 T^{11} + 3526923078 T^{12} - 64819794 p T^{13} - 146032362 p^{2} T^{14} + 3069156 p^{3} T^{15} + 4438542 p^{4} T^{16} - 141174 p^{5} T^{17} - 80308 p^{6} T^{18} + 9254 p^{7} T^{19} + 2642 p^{8} T^{20} - 244 p^{9} T^{21} - 86 p^{10} T^{22} + 2 p^{11} T^{23} + p^{12} T^{24} \)
31 \( 1 - 8 T - 50 T^{2} + 116 T^{3} + 3034 T^{4} + 10138 T^{5} - 131348 T^{6} + 10566 T^{7} + 1346874 T^{8} - 5966220 T^{9} - 99477774 T^{10} - 7938012 T^{11} + 6918069882 T^{12} - 7938012 p T^{13} - 99477774 p^{2} T^{14} - 5966220 p^{3} T^{15} + 1346874 p^{4} T^{16} + 10566 p^{5} T^{17} - 131348 p^{6} T^{18} + 10138 p^{7} T^{19} + 3034 p^{8} T^{20} + 116 p^{9} T^{21} - 50 p^{10} T^{22} - 8 p^{11} T^{23} + p^{12} T^{24} \)
37 \( ( 1 + 162 T^{2} + 68 T^{3} + 12531 T^{4} + 5820 T^{5} + 584916 T^{6} + 5820 p T^{7} + 12531 p^{2} T^{8} + 68 p^{3} T^{9} + 162 p^{4} T^{10} + p^{6} T^{12} )^{2} \)
41 \( 1 + 2 T - 161 T^{2} + 38 T^{3} + 14483 T^{4} - 23188 T^{5} - 832960 T^{6} + 2293860 T^{7} + 34705461 T^{8} - 105740430 T^{9} - 1089960255 T^{10} + 2027388630 T^{11} + 37240793262 T^{12} + 2027388630 p T^{13} - 1089960255 p^{2} T^{14} - 105740430 p^{3} T^{15} + 34705461 p^{4} T^{16} + 2293860 p^{5} T^{17} - 832960 p^{6} T^{18} - 23188 p^{7} T^{19} + 14483 p^{8} T^{20} + 38 p^{9} T^{21} - 161 p^{10} T^{22} + 2 p^{11} T^{23} + p^{12} T^{24} \)
43 \( 1 + 2 T - 155 T^{2} - 50 T^{3} + 11803 T^{4} - 11110 T^{5} - 685952 T^{6} + 480720 T^{7} + 37074837 T^{8} + 4517562 T^{9} - 1917932577 T^{10} - 322637328 T^{11} + 89159638086 T^{12} - 322637328 p T^{13} - 1917932577 p^{2} T^{14} + 4517562 p^{3} T^{15} + 37074837 p^{4} T^{16} + 480720 p^{5} T^{17} - 685952 p^{6} T^{18} - 11110 p^{7} T^{19} + 11803 p^{8} T^{20} - 50 p^{9} T^{21} - 155 p^{10} T^{22} + 2 p^{11} T^{23} + p^{12} T^{24} \)
47 \( 1 + 14 T - 66 T^{2} - 1624 T^{3} + 2274 T^{4} + 94616 T^{5} - 180484 T^{6} - 3216588 T^{7} + 25557282 T^{8} + 52812440 T^{9} - 2374780958 T^{10} - 210204606 T^{11} + 138811342666 T^{12} - 210204606 p T^{13} - 2374780958 p^{2} T^{14} + 52812440 p^{3} T^{15} + 25557282 p^{4} T^{16} - 3216588 p^{5} T^{17} - 180484 p^{6} T^{18} + 94616 p^{7} T^{19} + 2274 p^{8} T^{20} - 1624 p^{9} T^{21} - 66 p^{10} T^{22} + 14 p^{11} T^{23} + p^{12} T^{24} \)
53 \( ( 1 - 12 T + 294 T^{2} - 2664 T^{3} + 36195 T^{4} - 256476 T^{5} + 2484460 T^{6} - 256476 p T^{7} + 36195 p^{2} T^{8} - 2664 p^{3} T^{9} + 294 p^{4} T^{10} - 12 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
59 \( 1 - 6 T - 183 T^{2} + 1094 T^{3} + 14871 T^{4} - 71610 T^{5} - 1176532 T^{6} + 2457504 T^{7} + 109864125 T^{8} - 122046958 T^{9} - 7583261313 T^{10} + 4376692308 T^{11} + 430621860766 T^{12} + 4376692308 p T^{13} - 7583261313 p^{2} T^{14} - 122046958 p^{3} T^{15} + 109864125 p^{4} T^{16} + 2457504 p^{5} T^{17} - 1176532 p^{6} T^{18} - 71610 p^{7} T^{19} + 14871 p^{8} T^{20} + 1094 p^{9} T^{21} - 183 p^{10} T^{22} - 6 p^{11} T^{23} + p^{12} T^{24} \)
61 \( 1 - 14 T - 166 T^{2} + 2452 T^{3} + 23486 T^{4} - 256682 T^{5} - 2904116 T^{6} + 18433410 T^{7} + 310892370 T^{8} - 1035224932 T^{9} - 25169458330 T^{10} + 25123222006 T^{11} + 1689393499046 T^{12} + 25123222006 p T^{13} - 25169458330 p^{2} T^{14} - 1035224932 p^{3} T^{15} + 310892370 p^{4} T^{16} + 18433410 p^{5} T^{17} - 2904116 p^{6} T^{18} - 256682 p^{7} T^{19} + 23486 p^{8} T^{20} + 2452 p^{9} T^{21} - 166 p^{10} T^{22} - 14 p^{11} T^{23} + p^{12} T^{24} \)
67 \( 1 - 4 T - 139 T^{2} + 440 T^{3} + 8819 T^{4} + 10838 T^{5} + 22768 T^{6} - 7726476 T^{7} - 28246803 T^{8} + 772234804 T^{9} + 2282110511 T^{10} - 26367816958 T^{11} - 108360067642 T^{12} - 26367816958 p T^{13} + 2282110511 p^{2} T^{14} + 772234804 p^{3} T^{15} - 28246803 p^{4} T^{16} - 7726476 p^{5} T^{17} + 22768 p^{6} T^{18} + 10838 p^{7} T^{19} + 8819 p^{8} T^{20} + 440 p^{9} T^{21} - 139 p^{10} T^{22} - 4 p^{11} T^{23} + p^{12} T^{24} \)
71 \( ( 1 + 14 T + 354 T^{2} + 3362 T^{3} + 50451 T^{4} + 366980 T^{5} + 4312564 T^{6} + 366980 p T^{7} + 50451 p^{2} T^{8} + 3362 p^{3} T^{9} + 354 p^{4} T^{10} + 14 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
73 \( ( 1 - 30 T + 663 T^{2} - 10462 T^{3} + 1887 p T^{4} - 1485216 T^{5} + 13863318 T^{6} - 1485216 p T^{7} + 1887 p^{3} T^{8} - 10462 p^{3} T^{9} + 663 p^{4} T^{10} - 30 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
79 \( 1 - 16 T - 150 T^{2} + 1036 T^{3} + 48534 T^{4} - 92602 T^{5} - 4789796 T^{6} - 25294038 T^{7} + 421747950 T^{8} + 2410897964 T^{9} - 6318240602 T^{10} - 147604045356 T^{11} + 127084960154 T^{12} - 147604045356 p T^{13} - 6318240602 p^{2} T^{14} + 2410897964 p^{3} T^{15} + 421747950 p^{4} T^{16} - 25294038 p^{5} T^{17} - 4789796 p^{6} T^{18} - 92602 p^{7} T^{19} + 48534 p^{8} T^{20} + 1036 p^{9} T^{21} - 150 p^{10} T^{22} - 16 p^{11} T^{23} + p^{12} T^{24} \)
83 \( 1 - 24 T + 36 T^{2} + 4140 T^{3} - 28128 T^{4} - 434994 T^{5} + 5173688 T^{6} + 26364546 T^{7} - 558947316 T^{8} - 862732332 T^{9} + 46488493284 T^{10} - 3735835668 T^{11} - 3451975469358 T^{12} - 3735835668 p T^{13} + 46488493284 p^{2} T^{14} - 862732332 p^{3} T^{15} - 558947316 p^{4} T^{16} + 26364546 p^{5} T^{17} + 5173688 p^{6} T^{18} - 434994 p^{7} T^{19} - 28128 p^{8} T^{20} + 4140 p^{9} T^{21} + 36 p^{10} T^{22} - 24 p^{11} T^{23} + p^{12} T^{24} \)
89 \( ( 1 + 24 T + 690 T^{2} + 10612 T^{3} + 171027 T^{4} + 1875108 T^{5} + 20918900 T^{6} + 1875108 p T^{7} + 171027 p^{2} T^{8} + 10612 p^{3} T^{9} + 690 p^{4} T^{10} + 24 p^{5} T^{11} + p^{6} T^{12} )^{2} \)
97 \( 1 + 14 T - 153 T^{2} - 2150 T^{3} + 12699 T^{4} + 84500 T^{5} - 1669976 T^{6} - 9414804 T^{7} + 97057365 T^{8} + 1065322190 T^{9} - 8753923919 T^{10} - 19649592630 T^{11} + 1679085585182 T^{12} - 19649592630 p T^{13} - 8753923919 p^{2} T^{14} + 1065322190 p^{3} T^{15} + 97057365 p^{4} T^{16} - 9414804 p^{5} T^{17} - 1669976 p^{6} T^{18} + 84500 p^{7} T^{19} + 12699 p^{8} T^{20} - 2150 p^{9} T^{21} - 153 p^{10} T^{22} + 14 p^{11} T^{23} + p^{12} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.10603641743979422039113615870, −3.07604472161780714759785059906, −3.02268724977056940542222946968, −2.86963019502230193840102647105, −2.82991745296736925162951298806, −2.53586110975415561907995716339, −2.44082929141205425080283484235, −2.40573816357783628985102513804, −2.30824209231577288194641502066, −2.29805316092972625743354871523, −2.14980703466880795462637261607, −2.10063026408653145058470019787, −1.98501066536959533752920786911, −1.81948569632725538247638477868, −1.46904030127244527243947131813, −1.45212782918092853998658409789, −1.41619790533309068740610335129, −1.40409415050845811943333024437, −1.27361337744921258895680569597, −1.10371555436788300006204605223, −0.935520871809729528226655410648, −0.76627333250437729823393046703, −0.67448084148700229230792840174, −0.65719488674408006815123577991, −0.40315263537687332736287127391, 0.40315263537687332736287127391, 0.65719488674408006815123577991, 0.67448084148700229230792840174, 0.76627333250437729823393046703, 0.935520871809729528226655410648, 1.10371555436788300006204605223, 1.27361337744921258895680569597, 1.40409415050845811943333024437, 1.41619790533309068740610335129, 1.45212782918092853998658409789, 1.46904030127244527243947131813, 1.81948569632725538247638477868, 1.98501066536959533752920786911, 2.10063026408653145058470019787, 2.14980703466880795462637261607, 2.29805316092972625743354871523, 2.30824209231577288194641502066, 2.40573816357783628985102513804, 2.44082929141205425080283484235, 2.53586110975415561907995716339, 2.82991745296736925162951298806, 2.86963019502230193840102647105, 3.02268724977056940542222946968, 3.07604472161780714759785059906, 3.10603641743979422039113615870

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.