Properties

Label 20-3381e10-1.1-c1e10-0-0
Degree $20$
Conductor $1.952\times 10^{35}$
Sign $1$
Analytic cond. $2.05694\times 10^{14}$
Root an. cond. $5.19590$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s − 10·3-s + 2·4-s − 5·5-s − 30·6-s − 2·8-s + 55·9-s − 15·10-s + 8·11-s − 20·12-s + 50·15-s − 11·17-s + 165·18-s + 19-s − 10·20-s + 24·22-s + 10·23-s + 20·24-s − 2·25-s − 220·27-s + 22·29-s + 150·30-s − 3·31-s + 6·32-s − 80·33-s − 33·34-s + 110·36-s + ⋯
L(s)  = 1  + 2.12·2-s − 5.77·3-s + 4-s − 2.23·5-s − 12.2·6-s − 0.707·8-s + 55/3·9-s − 4.74·10-s + 2.41·11-s − 5.77·12-s + 12.9·15-s − 2.66·17-s + 38.8·18-s + 0.229·19-s − 2.23·20-s + 5.11·22-s + 2.08·23-s + 4.08·24-s − 2/5·25-s − 42.3·27-s + 4.08·29-s + 27.3·30-s − 0.538·31-s + 1.06·32-s − 13.9·33-s − 5.65·34-s + 55/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 7^{20} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 7^{20} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(3^{10} \cdot 7^{20} \cdot 23^{10}\)
Sign: $1$
Analytic conductor: \(2.05694\times 10^{14}\)
Root analytic conductor: \(5.19590\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{3381} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 3^{10} \cdot 7^{20} \cdot 23^{10} ,\ ( \ : [1/2]^{10} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.922077333\)
\(L(\frac12)\) \(\approx\) \(4.922077333\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 + T )^{10} \)
7 \( 1 \)
23 \( ( 1 - T )^{10} \)
good2 \( 1 - 3 T + 7 T^{2} - 13 T^{3} + 19 T^{4} - 23 T^{5} + 23 T^{6} - 15 T^{7} + p^{3} T^{8} - p T^{9} - 5 p T^{10} - p^{2} T^{11} + p^{5} T^{12} - 15 p^{3} T^{13} + 23 p^{4} T^{14} - 23 p^{5} T^{15} + 19 p^{6} T^{16} - 13 p^{7} T^{17} + 7 p^{8} T^{18} - 3 p^{9} T^{19} + p^{10} T^{20} \)
5 \( 1 + p T + 27 T^{2} + 74 T^{3} + 226 T^{4} + 406 T^{5} + 961 T^{6} + 943 T^{7} + 1589 T^{8} - 3414 T^{9} - 3906 T^{10} - 3414 p T^{11} + 1589 p^{2} T^{12} + 943 p^{3} T^{13} + 961 p^{4} T^{14} + 406 p^{5} T^{15} + 226 p^{6} T^{16} + 74 p^{7} T^{17} + 27 p^{8} T^{18} + p^{10} T^{19} + p^{10} T^{20} \)
11 \( 1 - 8 T + 86 T^{2} - 536 T^{3} + 3453 T^{4} - 17656 T^{5} + 87096 T^{6} - 373496 T^{7} + 1531194 T^{8} - 5591440 T^{9} + 1782764 p T^{10} - 5591440 p T^{11} + 1531194 p^{2} T^{12} - 373496 p^{3} T^{13} + 87096 p^{4} T^{14} - 17656 p^{5} T^{15} + 3453 p^{6} T^{16} - 536 p^{7} T^{17} + 86 p^{8} T^{18} - 8 p^{9} T^{19} + p^{10} T^{20} \)
13 \( 1 + 73 T^{2} + 32 T^{3} + 2827 T^{4} + 1656 T^{5} + 74194 T^{6} + 47428 T^{7} + 1433473 T^{8} + 67856 p T^{9} + 1632147 p T^{10} + 67856 p^{2} T^{11} + 1433473 p^{2} T^{12} + 47428 p^{3} T^{13} + 74194 p^{4} T^{14} + 1656 p^{5} T^{15} + 2827 p^{6} T^{16} + 32 p^{7} T^{17} + 73 p^{8} T^{18} + p^{10} T^{20} \)
17 \( 1 + 11 T + 129 T^{2} + 896 T^{3} + 6638 T^{4} + 37500 T^{5} + 225939 T^{6} + 1109875 T^{7} + 5679407 T^{8} + 24338740 T^{9} + 6399594 p T^{10} + 24338740 p T^{11} + 5679407 p^{2} T^{12} + 1109875 p^{3} T^{13} + 225939 p^{4} T^{14} + 37500 p^{5} T^{15} + 6638 p^{6} T^{16} + 896 p^{7} T^{17} + 129 p^{8} T^{18} + 11 p^{9} T^{19} + p^{10} T^{20} \)
19 \( 1 - T + 87 T^{2} + 92 T^{3} + 3939 T^{4} + 7517 T^{5} + 143282 T^{6} + 261081 T^{7} + 3922252 T^{8} + 7292197 T^{9} + 81792730 T^{10} + 7292197 p T^{11} + 3922252 p^{2} T^{12} + 261081 p^{3} T^{13} + 143282 p^{4} T^{14} + 7517 p^{5} T^{15} + 3939 p^{6} T^{16} + 92 p^{7} T^{17} + 87 p^{8} T^{18} - p^{9} T^{19} + p^{10} T^{20} \)
29 \( 1 - 22 T + 396 T^{2} - 5028 T^{3} + 56213 T^{4} - 523954 T^{5} + 4431344 T^{6} - 32918302 T^{7} + 225039538 T^{8} - 47551366 p T^{9} + 7821784840 T^{10} - 47551366 p^{2} T^{11} + 225039538 p^{2} T^{12} - 32918302 p^{3} T^{13} + 4431344 p^{4} T^{14} - 523954 p^{5} T^{15} + 56213 p^{6} T^{16} - 5028 p^{7} T^{17} + 396 p^{8} T^{18} - 22 p^{9} T^{19} + p^{10} T^{20} \)
31 \( 1 + 3 T + 151 T^{2} + 498 T^{3} + 11467 T^{4} + 45009 T^{5} + 576396 T^{6} + 86747 p T^{7} + 22159156 T^{8} + 114169875 T^{9} + 725780426 T^{10} + 114169875 p T^{11} + 22159156 p^{2} T^{12} + 86747 p^{4} T^{13} + 576396 p^{4} T^{14} + 45009 p^{5} T^{15} + 11467 p^{6} T^{16} + 498 p^{7} T^{17} + 151 p^{8} T^{18} + 3 p^{9} T^{19} + p^{10} T^{20} \)
37 \( 1 + 3 T + 161 T^{2} + 278 T^{3} + 14485 T^{4} + 20569 T^{5} + 956036 T^{6} + 1132127 T^{7} + 48764866 T^{8} + 51284227 T^{9} + 2012183766 T^{10} + 51284227 p T^{11} + 48764866 p^{2} T^{12} + 1132127 p^{3} T^{13} + 956036 p^{4} T^{14} + 20569 p^{5} T^{15} + 14485 p^{6} T^{16} + 278 p^{7} T^{17} + 161 p^{8} T^{18} + 3 p^{9} T^{19} + p^{10} T^{20} \)
41 \( 1 + 26 T + 512 T^{2} + 6720 T^{3} + 76013 T^{4} + 685282 T^{5} + 5667904 T^{6} + 40070790 T^{7} + 276322178 T^{8} + 1731175150 T^{9} + 11388208416 T^{10} + 1731175150 p T^{11} + 276322178 p^{2} T^{12} + 40070790 p^{3} T^{13} + 5667904 p^{4} T^{14} + 685282 p^{5} T^{15} + 76013 p^{6} T^{16} + 6720 p^{7} T^{17} + 512 p^{8} T^{18} + 26 p^{9} T^{19} + p^{10} T^{20} \)
43 \( 1 - 27 T + 581 T^{2} - 9052 T^{3} + 120253 T^{4} - 1359081 T^{5} + 13645946 T^{6} - 122446777 T^{7} + 999237334 T^{8} - 7437857957 T^{9} + 50915042966 T^{10} - 7437857957 p T^{11} + 999237334 p^{2} T^{12} - 122446777 p^{3} T^{13} + 13645946 p^{4} T^{14} - 1359081 p^{5} T^{15} + 120253 p^{6} T^{16} - 9052 p^{7} T^{17} + 581 p^{8} T^{18} - 27 p^{9} T^{19} + p^{10} T^{20} \)
47 \( 1 - 11 T + 339 T^{2} - 4008 T^{3} + 58016 T^{4} - 644720 T^{5} + 6567981 T^{6} - 61877523 T^{7} + 522453455 T^{8} - 4033587116 T^{9} + 29290339072 T^{10} - 4033587116 p T^{11} + 522453455 p^{2} T^{12} - 61877523 p^{3} T^{13} + 6567981 p^{4} T^{14} - 644720 p^{5} T^{15} + 58016 p^{6} T^{16} - 4008 p^{7} T^{17} + 339 p^{8} T^{18} - 11 p^{9} T^{19} + p^{10} T^{20} \)
53 \( 1 - 5 T + 227 T^{2} - 246 T^{3} + 24762 T^{4} + 17790 T^{5} + 2290301 T^{6} + 2254795 T^{7} + 165363027 T^{8} + 249573438 T^{9} + 9291376356 T^{10} + 249573438 p T^{11} + 165363027 p^{2} T^{12} + 2254795 p^{3} T^{13} + 2290301 p^{4} T^{14} + 17790 p^{5} T^{15} + 24762 p^{6} T^{16} - 246 p^{7} T^{17} + 227 p^{8} T^{18} - 5 p^{9} T^{19} + p^{10} T^{20} \)
59 \( 1 + 10 T + 424 T^{2} + 3184 T^{3} + 80053 T^{4} + 463650 T^{5} + 158136 p T^{6} + 43041298 T^{7} + 783568482 T^{8} + 3035519534 T^{9} + 51542536320 T^{10} + 3035519534 p T^{11} + 783568482 p^{2} T^{12} + 43041298 p^{3} T^{13} + 158136 p^{5} T^{14} + 463650 p^{5} T^{15} + 80053 p^{6} T^{16} + 3184 p^{7} T^{17} + 424 p^{8} T^{18} + 10 p^{9} T^{19} + p^{10} T^{20} \)
61 \( 1 - 22 T + 714 T^{2} - 11302 T^{3} + 210533 T^{4} - 2605624 T^{5} + 35344744 T^{6} - 356013880 T^{7} + 3820584514 T^{8} - 31888404540 T^{9} + 280566644636 T^{10} - 31888404540 p T^{11} + 3820584514 p^{2} T^{12} - 356013880 p^{3} T^{13} + 35344744 p^{4} T^{14} - 2605624 p^{5} T^{15} + 210533 p^{6} T^{16} - 11302 p^{7} T^{17} + 714 p^{8} T^{18} - 22 p^{9} T^{19} + p^{10} T^{20} \)
67 \( 1 + 2 T + 483 T^{2} + 862 T^{3} + 111131 T^{4} + 167714 T^{5} + 16179750 T^{6} + 20077692 T^{7} + 1667956063 T^{8} + 1723051688 T^{9} + 128324914779 T^{10} + 1723051688 p T^{11} + 1667956063 p^{2} T^{12} + 20077692 p^{3} T^{13} + 16179750 p^{4} T^{14} + 167714 p^{5} T^{15} + 111131 p^{6} T^{16} + 862 p^{7} T^{17} + 483 p^{8} T^{18} + 2 p^{9} T^{19} + p^{10} T^{20} \)
71 \( 1 - 27 T + 637 T^{2} - 11032 T^{3} + 170394 T^{4} - 2275812 T^{5} + 27918611 T^{6} - 308350531 T^{7} + 3166296871 T^{8} - 29776947596 T^{9} + 261349838452 T^{10} - 29776947596 p T^{11} + 3166296871 p^{2} T^{12} - 308350531 p^{3} T^{13} + 27918611 p^{4} T^{14} - 2275812 p^{5} T^{15} + 170394 p^{6} T^{16} - 11032 p^{7} T^{17} + 637 p^{8} T^{18} - 27 p^{9} T^{19} + p^{10} T^{20} \)
73 \( 1 + 8 T + 345 T^{2} + 2300 T^{3} + 54515 T^{4} + 330976 T^{5} + 84146 p T^{6} + 35986516 T^{7} + 604629557 T^{8} + 3281408828 T^{9} + 49781106667 T^{10} + 3281408828 p T^{11} + 604629557 p^{2} T^{12} + 35986516 p^{3} T^{13} + 84146 p^{5} T^{14} + 330976 p^{5} T^{15} + 54515 p^{6} T^{16} + 2300 p^{7} T^{17} + 345 p^{8} T^{18} + 8 p^{9} T^{19} + p^{10} T^{20} \)
79 \( 1 - 21 T + 525 T^{2} - 8126 T^{3} + 128643 T^{4} - 1617253 T^{5} + 20204082 T^{6} - 216467389 T^{7} + 2311417652 T^{8} - 21734709489 T^{9} + 205078494702 T^{10} - 21734709489 p T^{11} + 2311417652 p^{2} T^{12} - 216467389 p^{3} T^{13} + 20204082 p^{4} T^{14} - 1617253 p^{5} T^{15} + 128643 p^{6} T^{16} - 8126 p^{7} T^{17} + 525 p^{8} T^{18} - 21 p^{9} T^{19} + p^{10} T^{20} \)
83 \( 1 + 12 T + 362 T^{2} + 2682 T^{3} + 66305 T^{4} + 380966 T^{5} + 8925952 T^{6} + 41824294 T^{7} + 974731974 T^{8} + 3873777678 T^{9} + 87218795372 T^{10} + 3873777678 p T^{11} + 974731974 p^{2} T^{12} + 41824294 p^{3} T^{13} + 8925952 p^{4} T^{14} + 380966 p^{5} T^{15} + 66305 p^{6} T^{16} + 2682 p^{7} T^{17} + 362 p^{8} T^{18} + 12 p^{9} T^{19} + p^{10} T^{20} \)
89 \( 1 - 6 T + 590 T^{2} - 4154 T^{3} + 170593 T^{4} - 1273912 T^{5} + 32349800 T^{6} - 233618900 T^{7} + 4443951646 T^{8} - 29034364316 T^{9} + 456195269916 T^{10} - 29034364316 p T^{11} + 4443951646 p^{2} T^{12} - 233618900 p^{3} T^{13} + 32349800 p^{4} T^{14} - 1273912 p^{5} T^{15} + 170593 p^{6} T^{16} - 4154 p^{7} T^{17} + 590 p^{8} T^{18} - 6 p^{9} T^{19} + p^{10} T^{20} \)
97 \( 1 - 6 T + 286 T^{2} - 2290 T^{3} + 42685 T^{4} - 304468 T^{5} + 6024104 T^{6} - 33297868 T^{7} + 750467106 T^{8} - 5053993384 T^{9} + 76658721332 T^{10} - 5053993384 p T^{11} + 750467106 p^{2} T^{12} - 33297868 p^{3} T^{13} + 6024104 p^{4} T^{14} - 304468 p^{5} T^{15} + 42685 p^{6} T^{16} - 2290 p^{7} T^{17} + 286 p^{8} T^{18} - 6 p^{9} T^{19} + p^{10} T^{20} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.20540869236312593094745339289, −2.98532775087497435752267071806, −2.77984710864393777247253622971, −2.72832929673530371904236302188, −2.70470802211457488615488536910, −2.46706805048933552252581574356, −2.30871749165608807333858752406, −2.30523363321129628726147907711, −2.21992927247438352578935050670, −2.16501976726950543946951551575, −1.82610538665401551553390315131, −1.70328839329283785881970932437, −1.58217343181722003791338663778, −1.52915434460346669921192168325, −1.51077818719431514595773456197, −1.43188419819844126745875869213, −1.15468592851428619226280594731, −1.01671477517800375864409363671, −0.893261545656976000639346991188, −0.65666206084317941630737210210, −0.62854377213548230726438480507, −0.60451917206128996640654774511, −0.39988791219298933628040433637, −0.39250097494924073764365974975, −0.31783034320438359111323186294, 0.31783034320438359111323186294, 0.39250097494924073764365974975, 0.39988791219298933628040433637, 0.60451917206128996640654774511, 0.62854377213548230726438480507, 0.65666206084317941630737210210, 0.893261545656976000639346991188, 1.01671477517800375864409363671, 1.15468592851428619226280594731, 1.43188419819844126745875869213, 1.51077818719431514595773456197, 1.52915434460346669921192168325, 1.58217343181722003791338663778, 1.70328839329283785881970932437, 1.82610538665401551553390315131, 2.16501976726950543946951551575, 2.21992927247438352578935050670, 2.30523363321129628726147907711, 2.30871749165608807333858752406, 2.46706805048933552252581574356, 2.70470802211457488615488536910, 2.72832929673530371904236302188, 2.77984710864393777247253622971, 2.98532775087497435752267071806, 3.20540869236312593094745339289

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.