Properties

Label 2-997-997.897-c1-0-17
Degree $2$
Conductor $997$
Sign $-0.973 + 0.226i$
Analytic cond. $7.96108$
Root an. cond. $2.82153$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.17 + 1.69i)2-s + (0.792 + 0.0601i)3-s + (−0.788 + 2.09i)4-s + (−0.616 − 1.39i)5-s + (0.827 + 1.41i)6-s + (−4.03 + 2.26i)7-s + (−0.481 + 0.120i)8-s + (−2.34 − 0.357i)9-s + (1.63 − 2.67i)10-s + (1.69 + 0.635i)11-s + (−0.751 + 1.61i)12-s + (−2.26 + 4.04i)13-s + (−8.56 − 4.18i)14-s + (−0.404 − 1.14i)15-s + (2.60 + 2.27i)16-s + (−0.456 + 0.852i)17-s + ⋯
L(s)  = 1  + (0.828 + 1.19i)2-s + (0.457 + 0.0347i)3-s + (−0.394 + 1.04i)4-s + (−0.275 − 0.623i)5-s + (0.337 + 0.576i)6-s + (−1.52 + 0.855i)7-s + (−0.170 + 0.0427i)8-s + (−0.780 − 0.119i)9-s + (0.517 − 0.846i)10-s + (0.510 + 0.191i)11-s + (−0.216 + 0.466i)12-s + (−0.628 + 1.12i)13-s + (−2.28 − 1.11i)14-s + (−0.104 − 0.294i)15-s + (0.650 + 0.569i)16-s + (−0.110 + 0.206i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 997 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.226i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 997 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.973 + 0.226i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(997\)
Sign: $-0.973 + 0.226i$
Analytic conductor: \(7.96108\)
Root analytic conductor: \(2.82153\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{997} (897, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 997,\ (\ :1/2),\ -0.973 + 0.226i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.166397 - 1.44838i\)
\(L(\frac12)\) \(\approx\) \(0.166397 - 1.44838i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad997 \( 1 + (-31.4 - 2.82i)T \)
good2 \( 1 + (-1.17 - 1.69i)T + (-0.703 + 1.87i)T^{2} \)
3 \( 1 + (-0.792 - 0.0601i)T + (2.96 + 0.452i)T^{2} \)
5 \( 1 + (0.616 + 1.39i)T + (-3.36 + 3.69i)T^{2} \)
7 \( 1 + (4.03 - 2.26i)T + (3.65 - 5.97i)T^{2} \)
11 \( 1 + (-1.69 - 0.635i)T + (8.27 + 7.24i)T^{2} \)
13 \( 1 + (2.26 - 4.04i)T + (-6.78 - 11.0i)T^{2} \)
17 \( 1 + (0.456 - 0.852i)T + (-9.41 - 14.1i)T^{2} \)
19 \( 1 + (4.10 - 3.59i)T + (2.50 - 18.8i)T^{2} \)
23 \( 1 + (3.55 - 6.33i)T + (-11.9 - 19.6i)T^{2} \)
29 \( 1 + (4.65 + 2.38i)T + (16.9 + 23.5i)T^{2} \)
31 \( 1 + (-8.27 + 4.84i)T + (15.1 - 27.0i)T^{2} \)
37 \( 1 + (-6.49 - 5.90i)T + (3.49 + 36.8i)T^{2} \)
41 \( 1 + (1.20 - 1.48i)T + (-8.47 - 40.1i)T^{2} \)
43 \( 1 + (6.47 + 6.85i)T + (-2.44 + 42.9i)T^{2} \)
47 \( 1 + (1.82 - 1.21i)T + (18.1 - 43.3i)T^{2} \)
53 \( 1 + (-6.98 + 2.18i)T + (43.5 - 30.1i)T^{2} \)
59 \( 1 + (1.80 - 2.94i)T + (-26.8 - 52.5i)T^{2} \)
61 \( 1 + (-4.85 + 10.9i)T + (-41.0 - 45.1i)T^{2} \)
67 \( 1 + (1.24 - 13.0i)T + (-65.8 - 12.6i)T^{2} \)
71 \( 1 + (-2.19 + 0.871i)T + (51.6 - 48.7i)T^{2} \)
73 \( 1 + (1.46 - 5.03i)T + (-61.5 - 39.2i)T^{2} \)
79 \( 1 + (-6.84 - 0.780i)T + (76.9 + 17.7i)T^{2} \)
83 \( 1 + (1.09 + 2.35i)T + (-53.4 + 63.4i)T^{2} \)
89 \( 1 + (-8.16 - 7.71i)T + (5.05 + 88.8i)T^{2} \)
97 \( 1 + (-1.19 - 3.59i)T + (-77.6 + 58.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.985088784754314232414366540514, −9.422551244075665187882055706349, −8.558584041270427161614125949331, −7.924792595103436744454048044701, −6.68223524138501030566015598234, −6.24017171705074956800721975005, −5.45956874967424385099758296353, −4.27508261437046456696079470618, −3.60547885729168047466971767993, −2.25273064416455753115021043038, 0.44648026451099292427546784013, 2.52512442299585646654216156139, 3.04914906222586354378479229360, 3.74564392446866926233289210344, 4.75462496851199559392207917987, 6.06732521585020718234163626021, 6.88208023959024190463091066028, 7.82601838358476383022963603876, 8.930912421910346375655816461203, 9.919689925595629077469954434859

Graph of the $Z$-function along the critical line