Properties

Label 2-99-99.95-c1-0-1
Degree $2$
Conductor $99$
Sign $-0.859 - 0.511i$
Analytic cond. $0.790518$
Root an. cond. $0.889111$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.281 + 2.67i)2-s + (1.33 + 1.10i)3-s + (−5.14 − 1.09i)4-s + (1.43 − 0.151i)5-s + (−3.33 + 3.26i)6-s + (−1.07 − 0.965i)7-s + (2.71 − 8.34i)8-s + (0.560 + 2.94i)9-s + 3.89i·10-s + (2.66 − 1.96i)11-s + (−5.65 − 7.13i)12-s + (−1.21 − 2.71i)13-s + (2.89 − 2.60i)14-s + (2.08 + 1.38i)15-s + (11.9 + 5.33i)16-s + (−3.35 + 2.44i)17-s + ⋯
L(s)  = 1  + (−0.199 + 1.89i)2-s + (0.770 + 0.637i)3-s + (−2.57 − 0.546i)4-s + (0.643 − 0.0676i)5-s + (−1.36 + 1.33i)6-s + (−0.405 − 0.365i)7-s + (0.958 − 2.95i)8-s + (0.186 + 0.982i)9-s + 1.23i·10-s + (0.804 − 0.593i)11-s + (−1.63 − 2.06i)12-s + (−0.335 − 0.754i)13-s + (0.772 − 0.695i)14-s + (0.538 + 0.358i)15-s + (2.99 + 1.33i)16-s + (−0.814 + 0.591i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $-0.859 - 0.511i$
Analytic conductor: \(0.790518\)
Root analytic conductor: \(0.889111\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{99} (95, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :1/2),\ -0.859 - 0.511i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.277404 + 1.00753i\)
\(L(\frac12)\) \(\approx\) \(0.277404 + 1.00753i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.33 - 1.10i)T \)
11 \( 1 + (-2.66 + 1.96i)T \)
good2 \( 1 + (0.281 - 2.67i)T + (-1.95 - 0.415i)T^{2} \)
5 \( 1 + (-1.43 + 0.151i)T + (4.89 - 1.03i)T^{2} \)
7 \( 1 + (1.07 + 0.965i)T + (0.731 + 6.96i)T^{2} \)
13 \( 1 + (1.21 + 2.71i)T + (-8.69 + 9.66i)T^{2} \)
17 \( 1 + (3.35 - 2.44i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (1.19 + 0.387i)T + (15.3 + 11.1i)T^{2} \)
23 \( 1 + (-5.02 - 2.90i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.0651 - 0.0723i)T + (-3.03 - 28.8i)T^{2} \)
31 \( 1 + (-3.73 + 1.66i)T + (20.7 - 23.0i)T^{2} \)
37 \( 1 + (3.08 + 9.49i)T + (-29.9 + 21.7i)T^{2} \)
41 \( 1 + (3.05 + 3.39i)T + (-4.28 + 40.7i)T^{2} \)
43 \( 1 + (1.84 - 1.06i)T + (21.5 - 37.2i)T^{2} \)
47 \( 1 + (-1.50 - 7.10i)T + (-42.9 + 19.1i)T^{2} \)
53 \( 1 + (0.197 - 0.271i)T + (-16.3 - 50.4i)T^{2} \)
59 \( 1 + (-0.629 + 2.96i)T + (-53.8 - 23.9i)T^{2} \)
61 \( 1 + (-0.129 + 0.290i)T + (-40.8 - 45.3i)T^{2} \)
67 \( 1 + (1.71 - 2.97i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (5.38 + 7.41i)T + (-21.9 + 67.5i)T^{2} \)
73 \( 1 + (6.75 - 2.19i)T + (59.0 - 42.9i)T^{2} \)
79 \( 1 + (-9.96 - 1.04i)T + (77.2 + 16.4i)T^{2} \)
83 \( 1 + (-5.44 - 2.42i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 - 5.11iT - 89T^{2} \)
97 \( 1 + (0.631 - 6.00i)T + (-94.8 - 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.59399629236614239459089042614, −13.66326898684273096461312948678, −13.10279516049642928976922757687, −10.54124613022602393682704519081, −9.454281637617961927763413057525, −8.815884749923320837342808635121, −7.67411580528085226967702916252, −6.45697645839098973403279851108, −5.27599136831934172349154275498, −3.86632840649742537987645302686, 1.77832704596889595801477344588, 2.90652296113929338944558796235, 4.47770103746364499974390816826, 6.73364644246171017932868710913, 8.618300926594450074898276457376, 9.327802265049584871430318954232, 10.08620536324166301270698851738, 11.62062150417096126986067464261, 12.28831808327972017573386686091, 13.29913784900603257675174829769

Graph of the $Z$-function along the critical line