Properties

Label 2-99-99.41-c1-0-9
Degree $2$
Conductor $99$
Sign $-0.117 + 0.993i$
Analytic cond. $0.790518$
Root an. cond. $0.889111$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.337 + 0.150i)2-s + (−1.17 − 1.27i)3-s + (−1.24 − 1.38i)4-s + (−0.966 − 2.17i)5-s + (−0.204 − 0.607i)6-s + (0.327 + 1.54i)7-s + (−0.441 − 1.35i)8-s + (−0.251 + 2.98i)9-s − 0.879i·10-s + (2.12 − 2.54i)11-s + (−0.303 + 3.21i)12-s + (6.09 − 0.640i)13-s + (−0.121 + 0.570i)14-s + (−1.63 + 3.77i)15-s + (−0.334 + 3.17i)16-s + (−0.887 − 0.644i)17-s + ⋯
L(s)  = 1  + (0.238 + 0.106i)2-s + (−0.676 − 0.736i)3-s + (−0.623 − 0.692i)4-s + (−0.432 − 0.970i)5-s + (−0.0834 − 0.247i)6-s + (0.123 + 0.583i)7-s + (−0.156 − 0.480i)8-s + (−0.0837 + 0.996i)9-s − 0.278i·10-s + (0.641 − 0.766i)11-s + (−0.0876 + 0.927i)12-s + (1.69 − 0.177i)13-s + (−0.0324 + 0.152i)14-s + (−0.422 + 0.975i)15-s + (−0.0835 + 0.794i)16-s + (−0.215 − 0.156i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.117 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.117 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $-0.117 + 0.993i$
Analytic conductor: \(0.790518\)
Root analytic conductor: \(0.889111\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{99} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :1/2),\ -0.117 + 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.517961 - 0.582962i\)
\(L(\frac12)\) \(\approx\) \(0.517961 - 0.582962i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.17 + 1.27i)T \)
11 \( 1 + (-2.12 + 2.54i)T \)
good2 \( 1 + (-0.337 - 0.150i)T + (1.33 + 1.48i)T^{2} \)
5 \( 1 + (0.966 + 2.17i)T + (-3.34 + 3.71i)T^{2} \)
7 \( 1 + (-0.327 - 1.54i)T + (-6.39 + 2.84i)T^{2} \)
13 \( 1 + (-6.09 + 0.640i)T + (12.7 - 2.70i)T^{2} \)
17 \( 1 + (0.887 + 0.644i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (0.534 - 0.173i)T + (15.3 - 11.1i)T^{2} \)
23 \( 1 + (4.81 + 2.78i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + (0.726 - 0.154i)T + (26.4 - 11.7i)T^{2} \)
31 \( 1 + (-0.661 - 6.29i)T + (-30.3 + 6.44i)T^{2} \)
37 \( 1 + (-1.32 + 4.07i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (-11.8 - 2.52i)T + (37.4 + 16.6i)T^{2} \)
43 \( 1 + (7.35 - 4.24i)T + (21.5 - 37.2i)T^{2} \)
47 \( 1 + (-0.571 - 0.514i)T + (4.91 + 46.7i)T^{2} \)
53 \( 1 + (-2.66 - 3.66i)T + (-16.3 + 50.4i)T^{2} \)
59 \( 1 + (0.00834 - 0.00751i)T + (6.16 - 58.6i)T^{2} \)
61 \( 1 + (-5.69 - 0.599i)T + (59.6 + 12.6i)T^{2} \)
67 \( 1 + (0.738 - 1.27i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (4.89 - 6.74i)T + (-21.9 - 67.5i)T^{2} \)
73 \( 1 + (14.9 + 4.87i)T + (59.0 + 42.9i)T^{2} \)
79 \( 1 + (-1.29 + 2.90i)T + (-52.8 - 58.7i)T^{2} \)
83 \( 1 + (1.08 - 10.3i)T + (-81.1 - 17.2i)T^{2} \)
89 \( 1 - 9.01iT - 89T^{2} \)
97 \( 1 + (-5.06 - 2.25i)T + (64.9 + 72.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.47222893115412443507728464362, −12.67758288613354770647872751353, −11.67469135394072231461621982402, −10.65288749674594274100069174356, −8.927779274166070152266780760674, −8.311500499719828813049117085737, −6.33859655730666033429293909598, −5.58882733969301047995689374785, −4.24415067638477347470861048544, −1.08062158354187521553300891840, 3.63568158465370532249933751911, 4.27179080895124452638711094156, 6.09823362253657951982840253952, 7.39486674353056747037574936619, 8.829093914879412241297748860226, 10.06918847778153428975031590196, 11.19034447772516286599085909195, 11.79592830860987491174825676963, 13.15508044172678401450434623712, 14.21106450141561955960195875168

Graph of the $Z$-function along the critical line