Properties

Label 2-99-99.4-c1-0-6
Degree $2$
Conductor $99$
Sign $0.269 + 0.963i$
Analytic cond. $0.790518$
Root an. cond. $0.889111$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0694 − 0.660i)2-s + (−0.106 − 1.72i)3-s + (1.52 + 0.324i)4-s + (−0.116 − 1.11i)5-s + (−1.14 − 0.0494i)6-s + (−2.61 + 2.90i)7-s + (0.730 − 2.24i)8-s + (−2.97 + 0.369i)9-s − 0.741·10-s + (3.27 − 0.529i)11-s + (0.397 − 2.67i)12-s + (2.44 − 1.08i)13-s + (1.73 + 1.92i)14-s + (−1.90 + 0.320i)15-s + (1.41 + 0.629i)16-s + (−4.48 + 3.26i)17-s + ⋯
L(s)  = 1  + (0.0491 − 0.467i)2-s + (−0.0617 − 0.998i)3-s + (0.762 + 0.162i)4-s + (−0.0521 − 0.496i)5-s + (−0.469 − 0.0201i)6-s + (−0.987 + 1.09i)7-s + (0.258 − 0.794i)8-s + (−0.992 + 0.123i)9-s − 0.234·10-s + (0.987 − 0.159i)11-s + (0.114 − 0.770i)12-s + (0.678 − 0.302i)13-s + (0.463 + 0.515i)14-s + (−0.492 + 0.0827i)15-s + (0.353 + 0.157i)16-s + (−1.08 + 0.790i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.269 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.269 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $0.269 + 0.963i$
Analytic conductor: \(0.790518\)
Root analytic conductor: \(0.889111\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{99} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :1/2),\ 0.269 + 0.963i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.880020 - 0.667569i\)
\(L(\frac12)\) \(\approx\) \(0.880020 - 0.667569i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.106 + 1.72i)T \)
11 \( 1 + (-3.27 + 0.529i)T \)
good2 \( 1 + (-0.0694 + 0.660i)T + (-1.95 - 0.415i)T^{2} \)
5 \( 1 + (0.116 + 1.11i)T + (-4.89 + 1.03i)T^{2} \)
7 \( 1 + (2.61 - 2.90i)T + (-0.731 - 6.96i)T^{2} \)
13 \( 1 + (-2.44 + 1.08i)T + (8.69 - 9.66i)T^{2} \)
17 \( 1 + (4.48 - 3.26i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (1.58 - 4.88i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (1.05 - 1.83i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-0.724 + 0.804i)T + (-3.03 - 28.8i)T^{2} \)
31 \( 1 + (0.392 - 0.174i)T + (20.7 - 23.0i)T^{2} \)
37 \( 1 + (2.69 + 8.27i)T + (-29.9 + 21.7i)T^{2} \)
41 \( 1 + (1.95 + 2.16i)T + (-4.28 + 40.7i)T^{2} \)
43 \( 1 + (-1.11 - 1.93i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (12.5 - 2.66i)T + (42.9 - 19.1i)T^{2} \)
53 \( 1 + (4.56 + 3.31i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (-2.32 - 0.493i)T + (53.8 + 23.9i)T^{2} \)
61 \( 1 + (3.73 + 1.66i)T + (40.8 + 45.3i)T^{2} \)
67 \( 1 + (-4.87 + 8.44i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (5.11 - 3.71i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (3.60 + 11.1i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (0.471 - 4.48i)T + (-77.2 - 16.4i)T^{2} \)
83 \( 1 + (-0.440 - 0.196i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 - 16.0T + 89T^{2} \)
97 \( 1 + (0.837 - 7.97i)T + (-94.8 - 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14818690815257584648104021109, −12.55799939232271117670042438346, −11.88110003965426271214989885799, −10.80871219817338658313199688628, −9.192064918988024159836157364758, −8.210559780416000734794979238992, −6.58415662742868378658944845397, −6.01441497869218565115246389586, −3.45234382984802251463294474804, −1.85679005266241377224377463436, 3.13763102774179688164421073977, 4.57182189711335337749094925009, 6.48490928735631937137981527951, 6.87798374421829808369593406355, 8.768466961516443697203612404046, 9.961038075904788624216134255353, 10.91144387074864848237372056851, 11.58152078019380316519268280251, 13.40647198326233655921784565549, 14.35411493450058654244865452283

Graph of the $Z$-function along the critical line