Properties

Label 2-99-99.4-c1-0-5
Degree $2$
Conductor $99$
Sign $0.593 + 0.804i$
Analytic cond. $0.790518$
Root an. cond. $0.889111$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0512 − 0.487i)2-s + (−1.72 − 0.179i)3-s + (1.72 + 0.365i)4-s + (−0.178 − 1.69i)5-s + (−0.176 + 0.831i)6-s + (2.28 − 2.53i)7-s + (0.569 − 1.75i)8-s + (2.93 + 0.619i)9-s − 0.837·10-s + (−2.17 + 2.50i)11-s + (−2.89 − 0.939i)12-s + (−3.65 + 1.62i)13-s + (−1.11 − 1.24i)14-s + (0.00212 + 2.95i)15-s + (2.38 + 1.06i)16-s + (2.67 − 1.94i)17-s + ⋯
L(s)  = 1  + (0.0362 − 0.344i)2-s + (−0.994 − 0.103i)3-s + (0.860 + 0.182i)4-s + (−0.0798 − 0.759i)5-s + (−0.0718 + 0.339i)6-s + (0.862 − 0.957i)7-s + (0.201 − 0.620i)8-s + (0.978 + 0.206i)9-s − 0.264·10-s + (−0.656 + 0.754i)11-s + (−0.836 − 0.271i)12-s + (−1.01 + 0.450i)13-s + (−0.299 − 0.332i)14-s + (0.000549 + 0.763i)15-s + (0.597 + 0.265i)16-s + (0.648 − 0.471i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.593 + 0.804i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.593 + 0.804i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $0.593 + 0.804i$
Analytic conductor: \(0.790518\)
Root analytic conductor: \(0.889111\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{99} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :1/2),\ 0.593 + 0.804i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.850893 - 0.429707i\)
\(L(\frac12)\) \(\approx\) \(0.850893 - 0.429707i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.72 + 0.179i)T \)
11 \( 1 + (2.17 - 2.50i)T \)
good2 \( 1 + (-0.0512 + 0.487i)T + (-1.95 - 0.415i)T^{2} \)
5 \( 1 + (0.178 + 1.69i)T + (-4.89 + 1.03i)T^{2} \)
7 \( 1 + (-2.28 + 2.53i)T + (-0.731 - 6.96i)T^{2} \)
13 \( 1 + (3.65 - 1.62i)T + (8.69 - 9.66i)T^{2} \)
17 \( 1 + (-2.67 + 1.94i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (1.36 - 4.20i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (3.74 - 6.48i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-1.13 + 1.25i)T + (-3.03 - 28.8i)T^{2} \)
31 \( 1 + (3.56 - 1.58i)T + (20.7 - 23.0i)T^{2} \)
37 \( 1 + (-0.947 - 2.91i)T + (-29.9 + 21.7i)T^{2} \)
41 \( 1 + (-0.261 - 0.290i)T + (-4.28 + 40.7i)T^{2} \)
43 \( 1 + (4.80 + 8.32i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-1.05 + 0.224i)T + (42.9 - 19.1i)T^{2} \)
53 \( 1 + (-10.1 - 7.38i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (-3.57 - 0.760i)T + (53.8 + 23.9i)T^{2} \)
61 \( 1 + (3.52 + 1.56i)T + (40.8 + 45.3i)T^{2} \)
67 \( 1 + (1.55 - 2.68i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (5.67 - 4.12i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (4.64 + 14.3i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (-0.418 + 3.97i)T + (-77.2 - 16.4i)T^{2} \)
83 \( 1 + (0.114 + 0.0508i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + 7.93T + 89T^{2} \)
97 \( 1 + (0.0358 - 0.341i)T + (-94.8 - 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44939103145816397934650921687, −12.22549000078633156538848784027, −11.89294117835913385613318793844, −10.62575058238373454742355895366, −9.928367913387592839146702269744, −7.75500169106717318208318355344, −7.15511347625494328900985745054, −5.41951233579235980458314550871, −4.26563953147160158407767814772, −1.63062985388091965032127731377, 2.53115022093598841947991719817, 5.07400859276563567572197796147, 5.96320068301005053662319326980, 7.10513294404353288482816964826, 8.257671203084174473117221740360, 10.22538696373022349993320658508, 10.96405814655826874307878035228, 11.73387333874654409045447574740, 12.71121058697910661207348065937, 14.60520531812837158177073313510

Graph of the $Z$-function along the critical line