L(s) = 1 | + (−1.68 − 0.396i)3-s + (1 − 1.73i)4-s + (−3.68 − 2.12i)5-s + (2.68 + 1.33i)9-s + (2.87 − 1.65i)11-s + (−2.37 + 2.52i)12-s + (5.37 + 5.04i)15-s + (−1.99 − 3.46i)16-s + (−7.37 + 4.25i)20-s + (2.87 + 1.65i)23-s + (6.55 + 11.3i)25-s + (−4 − 3.31i)27-s + (5.55 − 9.62i)31-s + (−5.5 + 1.65i)33-s + (5 − 3.31i)36-s − 5.11·37-s + ⋯ |
L(s) = 1 | + (−0.973 − 0.228i)3-s + (0.5 − 0.866i)4-s + (−1.64 − 0.951i)5-s + (0.895 + 0.445i)9-s + (0.866 − 0.500i)11-s + (−0.684 + 0.728i)12-s + (1.38 + 1.30i)15-s + (−0.499 − 0.866i)16-s + (−1.64 + 0.951i)20-s + (0.598 + 0.345i)23-s + (1.31 + 2.27i)25-s + (−0.769 − 0.638i)27-s + (0.998 − 1.72i)31-s + (−0.957 + 0.288i)33-s + (0.833 − 0.552i)36-s − 0.841·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.283 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.283 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.382536 - 0.511743i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.382536 - 0.511743i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.68 + 0.396i)T \) |
| 11 | \( 1 + (-2.87 + 1.65i)T \) |
good | 2 | \( 1 + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (3.68 + 2.12i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-2.87 - 1.65i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.55 + 9.62i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 5.11T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.12 + 3.53i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 1.43iT - 53T^{2} \) |
| 59 | \( 1 + (-9.81 - 5.66i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.05 + 1.83i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.69iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 16.5iT - 89T^{2} \) |
| 97 | \( 1 + (-8.55 - 14.8i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.40273926519804500983737521302, −12.08750179933281686815598982503, −11.62897152922342046564522499400, −10.78494174959568348811470715475, −9.264904265355452950552686169486, −7.83787309733772378715696128377, −6.69766828677224253043623987357, −5.36900714361110054154701414779, −4.15951744692698623530818360822, −0.907798973200438474309634526588,
3.37289532433345097135088664317, 4.44231869870708802919807151731, 6.70879662021436986875811298569, 7.15342383655176570888930400320, 8.492941682877644108538145337693, 10.37901270499909754943815970642, 11.30661199998359670653171897410, 11.91724469874273935706154947141, 12.59591375238514878256494960649, 14.51579993206722124459419563777