L(s) = 1 | + (−1.97 + 1.43i)2-s + (1.21 − 3.74i)4-s + (2.23 − 3.07i)5-s + (−0.349 − 0.113i)7-s + (1.45 + 4.48i)8-s + 9.24i·10-s + (2.97 + 1.46i)11-s + (−0.557 − 0.767i)13-s + (0.852 − 0.276i)14-s + (−2.92 − 2.12i)16-s + (−2.77 − 2.01i)17-s + (4.05 − 1.31i)19-s + (−8.78 − 12.0i)20-s + (−7.96 + 1.38i)22-s + 4.96i·23-s + ⋯ |
L(s) = 1 | + (−1.39 + 1.01i)2-s + (0.608 − 1.87i)4-s + (0.997 − 1.37i)5-s + (−0.132 − 0.0429i)7-s + (0.515 + 1.58i)8-s + 2.92i·10-s + (0.897 + 0.440i)11-s + (−0.154 − 0.212i)13-s + (0.227 − 0.0740i)14-s + (−0.731 − 0.531i)16-s + (−0.673 − 0.489i)17-s + (0.929 − 0.302i)19-s + (−1.96 − 2.70i)20-s + (−1.69 + 0.295i)22-s + 1.03i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.226i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.226i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.610847 + 0.0702166i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.610847 + 0.0702166i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-2.97 - 1.46i)T \) |
good | 2 | \( 1 + (1.97 - 1.43i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-2.23 + 3.07i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.349 + 0.113i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (0.557 + 0.767i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (2.77 + 2.01i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-4.05 + 1.31i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 4.96iT - 23T^{2} \) |
| 29 | \( 1 + (-0.767 + 2.36i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.84 - 2.06i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.21 - 6.83i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.840 - 2.58i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 1.88iT - 43T^{2} \) |
| 47 | \( 1 + (0.0195 - 0.00636i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.25 - 4.48i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (6.29 + 2.04i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (5.73 - 7.88i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 4.46T + 67T^{2} \) |
| 71 | \( 1 + (6.06 - 8.35i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (4.18 + 1.35i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.42 - 8.84i)T + (-24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (7.42 + 5.39i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 3.04iT - 89T^{2} \) |
| 97 | \( 1 + (-12.2 + 8.86i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.08827860497354164192218021956, −13.07761710258488689702622939773, −11.69822611255280591270533312154, −9.995503481046031292483250331295, −9.374270673841449731739083399177, −8.684277806009354186720199807122, −7.35248933630106394609573582196, −6.14103586890522764363391448365, −4.98601444856056102550191966761, −1.37900142979280929225521552717,
2.01661134218978341531482207024, 3.35048469645583794992470785526, 6.20280971554546632574054600681, 7.30551575262942292852405807282, 8.848048393411771777133403997098, 9.673543847217256454933549325769, 10.60941801276476366426273049569, 11.24366822349596775124657809021, 12.43456421701771935432938056537, 13.86175202816943789627112334891