L(s) = 1 | + (0.205 + 0.149i)2-s + (−0.598 − 1.84i)4-s + (1.71 + 2.36i)5-s + (2.58 − 0.840i)7-s + (0.308 − 0.949i)8-s + 0.741i·10-s + (−2.71 − 1.89i)11-s + (−1.67 + 2.31i)13-s + (0.655 + 0.213i)14-s + (−2.92 + 2.12i)16-s + (−3.60 + 2.62i)17-s + (−1.81 − 0.590i)19-s + (3.32 − 4.57i)20-s + (−0.275 − 0.795i)22-s + 0.816i·23-s + ⋯ |
L(s) = 1 | + (0.145 + 0.105i)2-s + (−0.299 − 0.920i)4-s + (0.768 + 1.05i)5-s + (0.977 − 0.317i)7-s + (0.109 − 0.335i)8-s + 0.234i·10-s + (−0.820 − 0.572i)11-s + (−0.465 + 0.640i)13-s + (0.175 + 0.0569i)14-s + (−0.731 + 0.531i)16-s + (−0.875 + 0.636i)17-s + (−0.416 − 0.135i)19-s + (0.743 − 1.02i)20-s + (−0.0586 − 0.169i)22-s + 0.170i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13449 - 0.0359067i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13449 - 0.0359067i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (2.71 + 1.89i)T \) |
good | 2 | \( 1 + (-0.205 - 0.149i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-1.71 - 2.36i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-2.58 + 0.840i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.67 - 2.31i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (3.60 - 2.62i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.81 + 0.590i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 0.816iT - 23T^{2} \) |
| 29 | \( 1 + (2.95 + 9.07i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-4.84 - 3.51i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.83 - 5.65i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.60 - 8.02i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 11.8iT - 43T^{2} \) |
| 47 | \( 1 + (-7.34 - 2.38i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-6.14 + 8.45i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.0887 - 0.0288i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.26 - 1.73i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 1.40T + 67T^{2} \) |
| 71 | \( 1 + (-2.12 - 2.91i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (1.67 - 0.543i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (4.19 - 5.77i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.33 + 4.60i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 2.06iT - 89T^{2} \) |
| 97 | \( 1 + (1.35 + 0.981i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.89175682278449367931997180672, −13.38758136589249734555913355453, −11.43394147594959106810814049165, −10.61536928928313143247234704620, −9.874320168063832129558362222830, −8.405054767788682948829771180534, −6.85736439076616270756905614218, −5.83218387833088925905933303348, −4.51016408970179449378455678345, −2.18107314573745517132346405538,
2.34669555998390238218662787717, 4.58799818242106153691830156111, 5.34329451575505172005784510638, 7.44520019333582558720894500308, 8.481973566849011586245411040831, 9.331328617480702116474669152598, 10.81191926003411561892127758327, 12.13992399877531191665699003037, 12.84935458327847124112529258683, 13.60448273602105997128773551108