L(s) = 1 | + (−1.58 + 4.87i)2-s + (−14.7 − 10.7i)4-s + (−4.61 − 14.2i)5-s + (9.98 + 7.25i)7-s + (42.5 − 30.9i)8-s + 76.5·10-s + (31.7 + 18.0i)11-s + (9.43 − 29.0i)13-s + (−51.1 + 37.1i)14-s + (38.1 + 117. i)16-s + (−40.8 − 125. i)17-s + (18.0 − 13.1i)19-s + (−84.2 + 259. i)20-s + (−138. + 126. i)22-s + 158.·23-s + ⋯ |
L(s) = 1 | + (−0.559 + 1.72i)2-s + (−1.84 − 1.34i)4-s + (−0.412 − 1.27i)5-s + (0.539 + 0.391i)7-s + (1.88 − 1.36i)8-s + 2.42·10-s + (0.869 + 0.494i)11-s + (0.201 − 0.619i)13-s + (−0.976 + 0.709i)14-s + (0.595 + 1.83i)16-s + (−0.582 − 1.79i)17-s + (0.217 − 0.158i)19-s + (−0.942 + 2.90i)20-s + (−1.33 + 1.22i)22-s + 1.43·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.454i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.890 - 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.922721 + 0.221666i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.922721 + 0.221666i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-31.7 - 18.0i)T \) |
good | 2 | \( 1 + (1.58 - 4.87i)T + (-6.47 - 4.70i)T^{2} \) |
| 5 | \( 1 + (4.61 + 14.2i)T + (-101. + 73.4i)T^{2} \) |
| 7 | \( 1 + (-9.98 - 7.25i)T + (105. + 326. i)T^{2} \) |
| 13 | \( 1 + (-9.43 + 29.0i)T + (-1.77e3 - 1.29e3i)T^{2} \) |
| 17 | \( 1 + (40.8 + 125. i)T + (-3.97e3 + 2.88e3i)T^{2} \) |
| 19 | \( 1 + (-18.0 + 13.1i)T + (2.11e3 - 6.52e3i)T^{2} \) |
| 23 | \( 1 - 158.T + 1.21e4T^{2} \) |
| 29 | \( 1 + (38.6 + 28.0i)T + (7.53e3 + 2.31e4i)T^{2} \) |
| 31 | \( 1 + (-21.0 + 64.7i)T + (-2.41e4 - 1.75e4i)T^{2} \) |
| 37 | \( 1 + (128. + 93.1i)T + (1.56e4 + 4.81e4i)T^{2} \) |
| 41 | \( 1 + (-231. + 168. i)T + (2.12e4 - 6.55e4i)T^{2} \) |
| 43 | \( 1 - 103.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (375. - 272. i)T + (3.20e4 - 9.87e4i)T^{2} \) |
| 53 | \( 1 + (-1.86 + 5.75i)T + (-1.20e5 - 8.75e4i)T^{2} \) |
| 59 | \( 1 + (179. + 130. i)T + (6.34e4 + 1.95e5i)T^{2} \) |
| 61 | \( 1 + (84.7 + 260. i)T + (-1.83e5 + 1.33e5i)T^{2} \) |
| 67 | \( 1 - 187.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-141. - 435. i)T + (-2.89e5 + 2.10e5i)T^{2} \) |
| 73 | \( 1 + (-218. - 158. i)T + (1.20e5 + 3.69e5i)T^{2} \) |
| 79 | \( 1 + (-152. + 469. i)T + (-3.98e5 - 2.89e5i)T^{2} \) |
| 83 | \( 1 + (-83.7 - 257. i)T + (-4.62e5 + 3.36e5i)T^{2} \) |
| 89 | \( 1 - 77.4T + 7.04e5T^{2} \) |
| 97 | \( 1 + (392. - 1.20e3i)T + (-7.38e5 - 5.36e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.82920707120826123824373184663, −12.69162005370951295279336374489, −11.40185925879906821844504497511, −9.418562288397030544328856190513, −8.948947639252177219662674100063, −7.905182409725002839885121548570, −6.88828490474412573861260519119, −5.33605051221466289895648084319, −4.62698964880483738061866174343, −0.75211968789748615925303563157,
1.51919654341815645418098350620, 3.20600194945583447738890877035, 4.18313597820001289577512323753, 6.69176960219810338791169208926, 8.177192566783864332384209870349, 9.224307965135393223023619932551, 10.63411183314017917506110329128, 10.99299455251314374490313432976, 11.81358826187868313018674596222, 13.04746720620630081425650332964