L(s) = 1 | + (0.476 − 1.46i)2-s + (−0.309 − 0.224i)4-s + (−0.476 − 1.46i)5-s + (−0.190 − 0.138i)7-s + (2.02 − 1.46i)8-s − 2.38·10-s + (−2.31 + 2.37i)11-s + (−1.30 + 4.02i)13-s + (−0.294 + 0.214i)14-s + (−1.42 − 4.39i)16-s + (1.83 + 5.65i)17-s + (3.73 − 2.71i)19-s + (−0.182 + 0.560i)20-s + (2.38 + 4.53i)22-s − 7.49·23-s + ⋯ |
L(s) = 1 | + (0.337 − 1.03i)2-s + (−0.154 − 0.112i)4-s + (−0.213 − 0.656i)5-s + (−0.0721 − 0.0524i)7-s + (0.714 − 0.518i)8-s − 0.753·10-s + (−0.698 + 0.716i)11-s + (−0.363 + 1.11i)13-s + (−0.0787 + 0.0572i)14-s + (−0.356 − 1.09i)16-s + (0.445 + 1.37i)17-s + (0.857 − 0.622i)19-s + (−0.0407 + 0.125i)20-s + (0.507 + 0.965i)22-s − 1.56·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.213 + 0.976i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.213 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.936216 - 0.753354i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.936216 - 0.753354i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (2.31 - 2.37i)T \) |
good | 2 | \( 1 + (-0.476 + 1.46i)T + (-1.61 - 1.17i)T^{2} \) |
| 5 | \( 1 + (0.476 + 1.46i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (0.190 + 0.138i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (1.30 - 4.02i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-1.83 - 5.65i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-3.73 + 2.71i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 7.49T + 23T^{2} \) |
| 29 | \( 1 + (-1.54 - 1.12i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (0.736 - 2.26i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (5.04 + 3.66i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-4.51 + 3.28i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 10.7T + 43T^{2} \) |
| 47 | \( 1 + (-0.771 + 0.560i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-2.79 + 8.59i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (6.83 + 4.96i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.33 - 4.11i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 - 3.85T + 67T^{2} \) |
| 71 | \( 1 + (-2.38 - 7.33i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-5.23 - 3.80i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (0.163 - 0.502i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (1.36 + 4.18i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 16.7T + 89T^{2} \) |
| 97 | \( 1 + (3.95 - 12.1i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.32809481313283364871461346843, −12.39706289365213656627170801740, −11.86458414854459115168721301095, −10.56724531234688140896988090091, −9.691902637042252784717179567929, −8.216857159549490818395632936840, −6.93270139749146723038610449064, −4.99066353992131693364620669113, −3.80777498854078035110093893622, −1.97544366425961921616310001188,
3.05229173116034381947425397531, 5.11402252571010367400531264764, 6.07301908876095571532798415771, 7.42889820063496557347167234716, 8.054603710489082542636485817051, 9.918579959745643594456935926133, 10.89979490009467039655098838499, 12.06478239331470348338738834125, 13.56506545277694676155186049083, 14.20755569879558816348627991673