L(s) = 1 | + (−1.58 − 4.87i)2-s + (−14.7 + 10.7i)4-s + (−4.61 + 14.2i)5-s + (9.98 − 7.25i)7-s + (42.5 + 30.9i)8-s + 76.5·10-s + (31.7 − 18.0i)11-s + (9.43 + 29.0i)13-s + (−51.1 − 37.1i)14-s + (38.1 − 117. i)16-s + (−40.8 + 125. i)17-s + (18.0 + 13.1i)19-s + (−84.2 − 259. i)20-s + (−138. − 126. i)22-s + 158.·23-s + ⋯ |
L(s) = 1 | + (−0.559 − 1.72i)2-s + (−1.84 + 1.34i)4-s + (−0.412 + 1.27i)5-s + (0.539 − 0.391i)7-s + (1.88 + 1.36i)8-s + 2.42·10-s + (0.869 − 0.494i)11-s + (0.201 + 0.619i)13-s + (−0.976 − 0.709i)14-s + (0.595 − 1.83i)16-s + (−0.582 + 1.79i)17-s + (0.217 + 0.158i)19-s + (−0.942 − 2.90i)20-s + (−1.33 − 1.22i)22-s + 1.43·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 + 0.454i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.890 + 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.922721 - 0.221666i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.922721 - 0.221666i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-31.7 + 18.0i)T \) |
good | 2 | \( 1 + (1.58 + 4.87i)T + (-6.47 + 4.70i)T^{2} \) |
| 5 | \( 1 + (4.61 - 14.2i)T + (-101. - 73.4i)T^{2} \) |
| 7 | \( 1 + (-9.98 + 7.25i)T + (105. - 326. i)T^{2} \) |
| 13 | \( 1 + (-9.43 - 29.0i)T + (-1.77e3 + 1.29e3i)T^{2} \) |
| 17 | \( 1 + (40.8 - 125. i)T + (-3.97e3 - 2.88e3i)T^{2} \) |
| 19 | \( 1 + (-18.0 - 13.1i)T + (2.11e3 + 6.52e3i)T^{2} \) |
| 23 | \( 1 - 158.T + 1.21e4T^{2} \) |
| 29 | \( 1 + (38.6 - 28.0i)T + (7.53e3 - 2.31e4i)T^{2} \) |
| 31 | \( 1 + (-21.0 - 64.7i)T + (-2.41e4 + 1.75e4i)T^{2} \) |
| 37 | \( 1 + (128. - 93.1i)T + (1.56e4 - 4.81e4i)T^{2} \) |
| 41 | \( 1 + (-231. - 168. i)T + (2.12e4 + 6.55e4i)T^{2} \) |
| 43 | \( 1 - 103.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (375. + 272. i)T + (3.20e4 + 9.87e4i)T^{2} \) |
| 53 | \( 1 + (-1.86 - 5.75i)T + (-1.20e5 + 8.75e4i)T^{2} \) |
| 59 | \( 1 + (179. - 130. i)T + (6.34e4 - 1.95e5i)T^{2} \) |
| 61 | \( 1 + (84.7 - 260. i)T + (-1.83e5 - 1.33e5i)T^{2} \) |
| 67 | \( 1 - 187.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-141. + 435. i)T + (-2.89e5 - 2.10e5i)T^{2} \) |
| 73 | \( 1 + (-218. + 158. i)T + (1.20e5 - 3.69e5i)T^{2} \) |
| 79 | \( 1 + (-152. - 469. i)T + (-3.98e5 + 2.89e5i)T^{2} \) |
| 83 | \( 1 + (-83.7 + 257. i)T + (-4.62e5 - 3.36e5i)T^{2} \) |
| 89 | \( 1 - 77.4T + 7.04e5T^{2} \) |
| 97 | \( 1 + (392. + 1.20e3i)T + (-7.38e5 + 5.36e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.04746720620630081425650332964, −11.81358826187868313018674596222, −10.99299455251314374490313432976, −10.63411183314017917506110329128, −9.224307965135393223023619932551, −8.177192566783864332384209870349, −6.69176960219810338791169208926, −4.18313597820001289577512323753, −3.20600194945583447738890877035, −1.51919654341815645418098350620,
0.75211968789748615925303563157, 4.62698964880483738061866174343, 5.33605051221466289895648084319, 6.88828490474412573861260519119, 7.905182409725002839885121548570, 8.948947639252177219662674100063, 9.418562288397030544328856190513, 11.40185925879906821844504497511, 12.69162005370951295279336374489, 13.82920707120826123824373184663