| L(s) = 1 | + (−0.476 − 1.46i)2-s + (−0.309 + 0.224i)4-s + (0.476 − 1.46i)5-s + (−0.190 + 0.138i)7-s + (−2.02 − 1.46i)8-s − 2.38·10-s + (2.31 + 2.37i)11-s + (−1.30 − 4.02i)13-s + (0.294 + 0.214i)14-s + (−1.42 + 4.39i)16-s + (−1.83 + 5.65i)17-s + (3.73 + 2.71i)19-s + (0.182 + 0.560i)20-s + (2.38 − 4.53i)22-s + 7.49·23-s + ⋯ |
| L(s) = 1 | + (−0.337 − 1.03i)2-s + (−0.154 + 0.112i)4-s + (0.213 − 0.656i)5-s + (−0.0721 + 0.0524i)7-s + (−0.714 − 0.518i)8-s − 0.753·10-s + (0.698 + 0.716i)11-s + (−0.363 − 1.11i)13-s + (0.0787 + 0.0572i)14-s + (−0.356 + 1.09i)16-s + (−0.445 + 1.37i)17-s + (0.857 + 0.622i)19-s + (0.0407 + 0.125i)20-s + (0.507 − 0.965i)22-s + 1.56·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.213 + 0.976i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.213 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.572950 - 0.712022i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.572950 - 0.712022i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 11 | \( 1 + (-2.31 - 2.37i)T \) |
| good | 2 | \( 1 + (0.476 + 1.46i)T + (-1.61 + 1.17i)T^{2} \) |
| 5 | \( 1 + (-0.476 + 1.46i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (0.190 - 0.138i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (1.30 + 4.02i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (1.83 - 5.65i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-3.73 - 2.71i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 7.49T + 23T^{2} \) |
| 29 | \( 1 + (1.54 - 1.12i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (0.736 + 2.26i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (5.04 - 3.66i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (4.51 + 3.28i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 10.7T + 43T^{2} \) |
| 47 | \( 1 + (0.771 + 0.560i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (2.79 + 8.59i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-6.83 + 4.96i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.33 + 4.11i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 3.85T + 67T^{2} \) |
| 71 | \( 1 + (2.38 - 7.33i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-5.23 + 3.80i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (0.163 + 0.502i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-1.36 + 4.18i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 16.7T + 89T^{2} \) |
| 97 | \( 1 + (3.95 + 12.1i)T + (-78.4 + 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.02172898955578458384305736159, −12.55863503223967517868882497609, −11.46219139483417754566890553636, −10.35268894495001875172298569809, −9.525824805484387533438308794485, −8.456444948874643382791324184426, −6.77053348669658884742095531004, −5.23476786268654704783853889482, −3.41797442981747160207817098763, −1.54587090049141863590163174685,
2.96592272574710577737959721356, 5.14267665302715992209516976583, 6.76185038977254281236464950227, 7.03177062674679116946744546239, 8.712689065126223065505905651229, 9.484850444696367987562301613656, 11.17609648175847544469955304582, 11.83990863810097002437522535741, 13.61405720342620725596840349226, 14.35000582949412150370872480602