Properties

Label 2-99-11.10-c8-0-18
Degree $2$
Conductor $99$
Sign $1$
Analytic cond. $40.3304$
Root an. cond. $6.35062$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 256·4-s − 1.15e3·5-s − 1.46e4·11-s + 6.55e4·16-s − 2.94e5·20-s + 5.31e5·23-s + 9.34e5·25-s − 1.54e6·31-s + 7.16e5·37-s − 3.74e6·44-s + 6.08e6·47-s + 5.76e6·49-s + 1.52e7·53-s + 1.68e7·55-s + 4.10e6·59-s + 1.67e7·64-s + 1.98e7·67-s − 7.04e6·71-s − 7.54e7·80-s + 8.41e7·89-s + 1.36e8·92-s − 8.11e7·97-s + 2.39e8·100-s − 3.62e6·103-s − 1.01e8·113-s − 6.12e8·115-s + ⋯
L(s)  = 1  + 4-s − 1.84·5-s − 11-s + 16-s − 1.84·20-s + 1.90·23-s + 2.39·25-s − 1.66·31-s + 0.382·37-s − 44-s + 1.24·47-s + 49-s + 1.93·53-s + 1.84·55-s + 0.338·59-s + 64-s + 0.982·67-s − 0.277·71-s − 1.84·80-s + 1.34·89-s + 1.90·92-s − 0.916·97-s + 2.39·100-s − 0.0322·103-s − 0.624·113-s − 3.49·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(40.3304\)
Root analytic conductor: \(6.35062\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: $\chi_{99} (10, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.591340511\)
\(L(\frac12)\) \(\approx\) \(1.591340511\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + p^{4} T \)
good2 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
5 \( 1 + 1151 T + p^{8} T^{2} \)
7 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
13 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
17 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
19 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
23 \( 1 - 531793 T + p^{8} T^{2} \)
29 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
31 \( 1 + 1541233 T + p^{8} T^{2} \)
37 \( 1 - 716447 T + p^{8} T^{2} \)
41 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
43 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
47 \( 1 - 6080638 T + p^{8} T^{2} \)
53 \( 1 - 15265438 T + p^{8} T^{2} \)
59 \( 1 - 4101553 T + p^{8} T^{2} \)
61 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
67 \( 1 - 19806767 T + p^{8} T^{2} \)
71 \( 1 + 7043087 T + p^{8} T^{2} \)
73 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
79 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
83 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
89 \( 1 - 84100993 T + p^{8} T^{2} \)
97 \( 1 + 81155713 T + p^{8} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.14137087328385802258826632174, −11.19439085101696741204618287085, −10.62943513321102072921375512272, −8.738627256085313969954019262152, −7.58830407518295512995371641264, −7.07113928930912776049405793733, −5.29302210572638443674360194120, −3.78524835754885102650873961033, −2.67163070383545103821817819942, −0.72650840871199448936161405043, 0.72650840871199448936161405043, 2.67163070383545103821817819942, 3.78524835754885102650873961033, 5.29302210572638443674360194120, 7.07113928930912776049405793733, 7.58830407518295512995371641264, 8.738627256085313969954019262152, 10.62943513321102072921375512272, 11.19439085101696741204618287085, 12.14137087328385802258826632174

Graph of the $Z$-function along the critical line