Properties

Label 2-99-1.1-c5-0-18
Degree $2$
Conductor $99$
Sign $-1$
Analytic cond. $15.8779$
Root an. cond. $3.98472$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 16·4-s + 19·5-s + 10·7-s − 192·8-s + 76·10-s + 121·11-s − 1.14e3·13-s + 40·14-s − 256·16-s − 686·17-s − 384·19-s − 304·20-s + 484·22-s − 3.70e3·23-s − 2.76e3·25-s − 4.59e3·26-s − 160·28-s + 5.42e3·29-s − 6.44e3·31-s + 5.12e3·32-s − 2.74e3·34-s + 190·35-s + 1.20e4·37-s − 1.53e3·38-s − 3.64e3·40-s + 1.52e3·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.339·5-s + 0.0771·7-s − 1.06·8-s + 0.240·10-s + 0.301·11-s − 1.88·13-s + 0.0545·14-s − 1/4·16-s − 0.575·17-s − 0.244·19-s − 0.169·20-s + 0.213·22-s − 1.46·23-s − 0.884·25-s − 1.33·26-s − 0.0385·28-s + 1.19·29-s − 1.20·31-s + 0.883·32-s − 0.407·34-s + 0.0262·35-s + 1.44·37-s − 0.172·38-s − 0.360·40-s + 0.141·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(15.8779\)
Root analytic conductor: \(3.98472\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 99,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - p^{2} T \)
good2 \( 1 - p^{2} T + p^{5} T^{2} \)
5 \( 1 - 19 T + p^{5} T^{2} \)
7 \( 1 - 10 T + p^{5} T^{2} \)
13 \( 1 + 1148 T + p^{5} T^{2} \)
17 \( 1 + 686 T + p^{5} T^{2} \)
19 \( 1 + 384 T + p^{5} T^{2} \)
23 \( 1 + 3709 T + p^{5} T^{2} \)
29 \( 1 - 5424 T + p^{5} T^{2} \)
31 \( 1 + 6443 T + p^{5} T^{2} \)
37 \( 1 - 12063 T + p^{5} T^{2} \)
41 \( 1 - 1528 T + p^{5} T^{2} \)
43 \( 1 + 4026 T + p^{5} T^{2} \)
47 \( 1 + 7168 T + p^{5} T^{2} \)
53 \( 1 - 29862 T + p^{5} T^{2} \)
59 \( 1 - 6461 T + p^{5} T^{2} \)
61 \( 1 + 16980 T + p^{5} T^{2} \)
67 \( 1 - 29999 T + p^{5} T^{2} \)
71 \( 1 + 31023 T + p^{5} T^{2} \)
73 \( 1 - 1924 T + p^{5} T^{2} \)
79 \( 1 - 65138 T + p^{5} T^{2} \)
83 \( 1 - 102714 T + p^{5} T^{2} \)
89 \( 1 + 17415 T + p^{5} T^{2} \)
97 \( 1 - 66905 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.50950859468504575738360007063, −11.73366747322782986789084884997, −10.07118556912476989321768739592, −9.292976145996946453589101210740, −7.904305247890995823725828211671, −6.38415385656017770797677190105, −5.14991144505655768985694924122, −4.08941014976183756182469263837, −2.37779347924315653506074882625, 0, 2.37779347924315653506074882625, 4.08941014976183756182469263837, 5.14991144505655768985694924122, 6.38415385656017770797677190105, 7.904305247890995823725828211671, 9.292976145996946453589101210740, 10.07118556912476989321768739592, 11.73366747322782986789084884997, 12.50950859468504575738360007063

Graph of the $Z$-function along the critical line