Properties

Label 2-99-1.1-c13-0-28
Degree $2$
Conductor $99$
Sign $-1$
Analytic cond. $106.158$
Root an. cond. $10.3033$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 140·2-s + 1.14e4·4-s − 4.87e4·5-s + 4.87e5·7-s − 4.50e5·8-s + 6.82e6·10-s + 1.77e6·11-s − 1.83e7·13-s − 6.82e7·14-s − 3.04e7·16-s + 9.62e7·17-s − 1.49e7·19-s − 5.56e8·20-s − 2.48e8·22-s − 1.53e8·23-s + 1.15e9·25-s + 2.57e9·26-s + 5.56e9·28-s − 5.21e9·29-s + 1.18e9·31-s + 7.94e9·32-s − 1.34e10·34-s − 2.37e10·35-s − 1.76e10·37-s + 2.09e9·38-s + 2.19e10·40-s + 1.94e10·41-s + ⋯
L(s)  = 1  − 1.54·2-s + 1.39·4-s − 1.39·5-s + 1.56·7-s − 0.607·8-s + 2.15·10-s + 0.301·11-s − 1.05·13-s − 2.42·14-s − 0.453·16-s + 0.966·17-s − 0.0729·19-s − 1.94·20-s − 0.466·22-s − 0.216·23-s + 0.946·25-s + 1.63·26-s + 2.18·28-s − 1.62·29-s + 0.239·31-s + 1.30·32-s − 1.49·34-s − 2.18·35-s − 1.13·37-s + 0.112·38-s + 0.847·40-s + 0.639·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(106.158\)
Root analytic conductor: \(10.3033\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 99,\ (\ :13/2),\ -1)\)

Particular Values

\(L(7)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - p^{6} T \)
good2 \( 1 + 35 p^{2} T + p^{13} T^{2} \)
5 \( 1 + 9748 p T + p^{13} T^{2} \)
7 \( 1 - 487486 T + p^{13} T^{2} \)
13 \( 1 + 18388304 T + p^{13} T^{2} \)
17 \( 1 - 96233254 T + p^{13} T^{2} \)
19 \( 1 + 14954652 T + p^{13} T^{2} \)
23 \( 1 + 153804394 T + p^{13} T^{2} \)
29 \( 1 + 5219010534 T + p^{13} T^{2} \)
31 \( 1 - 1183811728 T + p^{13} T^{2} \)
37 \( 1 + 17672200362 T + p^{13} T^{2} \)
41 \( 1 - 19461739306 T + p^{13} T^{2} \)
43 \( 1 + 79355928 p T + p^{13} T^{2} \)
47 \( 1 - 100327719050 T + p^{13} T^{2} \)
53 \( 1 + 275469097716 T + p^{13} T^{2} \)
59 \( 1 - 267676863080 T + p^{13} T^{2} \)
61 \( 1 - 563486626260 T + p^{13} T^{2} \)
67 \( 1 - 1080842815700 T + p^{13} T^{2} \)
71 \( 1 - 1150562265222 T + p^{13} T^{2} \)
73 \( 1 + 345914515454 T + p^{13} T^{2} \)
79 \( 1 + 2004080959294 T + p^{13} T^{2} \)
83 \( 1 - 3336732240564 T + p^{13} T^{2} \)
89 \( 1 - 5696238036294 T + p^{13} T^{2} \)
97 \( 1 + 6550114593202 T + p^{13} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83642149821306794272396642667, −9.607920743514258974019144385801, −8.429427844521166822799626178172, −7.78016025079190298318576420829, −7.20046986618296394972468690067, −5.11481480960545960599755526758, −3.91511648887501183612240997317, −2.13564075699387035323201718910, −1.03492819896378162697610157802, 0, 1.03492819896378162697610157802, 2.13564075699387035323201718910, 3.91511648887501183612240997317, 5.11481480960545960599755526758, 7.20046986618296394972468690067, 7.78016025079190298318576420829, 8.429427844521166822799626178172, 9.607920743514258974019144385801, 10.83642149821306794272396642667

Graph of the $Z$-function along the critical line